Статья: Краткое доказательство великой теоремы Ферма

Великая теорема Ферма формулируется следующим образом: диофантово уравнение (http://soluvel.okis.ru/evrika.html):

А n + В n = С n * /1/

где n - целое положительное число, большее двух, не имеет решения в целых положительных числах A , B , С .

ДОКАЗАТЕЛЬСТВО

Из формулировки Великой теоремы Ферма следует: если n – целое положительное число, большее двух, то при условии, что два из трех чисел А , В или С - целые положительные числа, одно из этих чисел не является целым положительным числом.

Доказательство строим, исходя из основной теоремы арифметики, которая называется «теоремой о единственности факторизации» или «теоремой о единственности разложения на простые множители целых составных чисел». Возможны нечетные и четные показатели степени n . Рассмотрим оба случая.

1. Случай первый: показатель степени n - нечетное число.

В этом случае выражение /1/ преобразуется по известным формулам следующим образом:

А n + В n = С n = (A+B)[An-1 -An-2 ·B +An-3 ·B2 - …-A·Bn-2 +Bn-1 ] /2/

Полагаем, что A и B – целые положительные числа.

Числа А , В и С должны быть взаимно простыми числами.

Из уравнения /2/ следует, что при заданных значениях чисел A и B множитель ( A + B ) имеет одно и тоже значение при любых значениях показателя степени n , следовательно, он является делителем числа С.

Допустим, что число С - целое положительное число. С учетом принятых условий и основной теоремы арифметики должновыполняться условие:

С n = An + Bn =(A+B)n ∙ Dn , / 3/

гдемножитель Dn должен быть целым числом и, следовательно, число D также должно быть целым числом.

Из уравнения /3/ следует:

/4/

Из уравнения /3/ также следует, что число [Cn = An + Bn ] при условии, что число С – целое число, должно делиться на число ( A + B ) n . Однако известно, что:

An + Bn < ( A + B ) n /5/

Следовательно:

- дробное число, меньшее единицы. /6/

- дробное число.

Отсюда следует, что при нечетном значении показателя степени n уравнение /1/ великой теоремы Ферма не имеет решения в целых положительных числах.

При нечетных показателях степени n >2 число:

< 1- дробное число, не являющееся рациональной дробью.

Из анализа уравнения /2/ следует, что при нечетном показателе степени n число:

С n = А n + В n = (A+B)[An-1 -An-2 ·B +An-3 ·B2 - …-A·Bn-2 +Bn-1 ]

состоит из двух определенных алгебраических множителей, при этом при любом значении показателя степени n неизменным остаетсяалгебраический множитель ( A + B ).

Таким образом, великая теорема Ферма не имеет решения в целых положительных числах при нечетном показателе степени n >2.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 189
Бесплатно скачать Статья: Краткое доказательство великой теоремы Ферма