Статья: Нелокальная краевая задача для уравнения смешанного типа третьего порядка с кратными характерис
; (24)
. (25)
Используя известное тождество [3],
,
где интеграл понимается в смысле главного значения по Коши, уравнение (16) с учетом (5`), (17) – (19), (22) – (25) и делая несложные преобразования, приводится к сингулярному интегральному уравнению [1, 3]:
(26)
где сингулярный оператор S задаётся формулой:
,
,
,
,
,
,
– известные функции, ограниченные соответственно на 0 £ t £ x £ 1, 0 £ x £ t £ 1, 0 £ x £ 1, причем
,
.
Производя регуляризацию уравнения (26) по методу Карлемана – Векуа [4] и делая несложные преобразования, оно приводится к интегральному уравнению Фредгольма третьего рода [2]:
, (27)
где причем ядро
и функция
ограниченные соответственно при, 0£ x, t£ 1, 0£ x£ 1.
Следуя [2], обозначим через – множество функций
, непрерывных всюду кроме быть может точек x=0, (x=1) и удовлетворяющих условию
где
,
– целая часть
,
– целая часть
[1].
В работе [2] найдены необходимые и достаточные условия существования решения уравнения (27) в классе .
Функция , определенная формулой (21), принадлежит классу искомых решений интегрального уравнения (8).
После определения , функция
задаётся формулой (12). Таким образом, в области
приходим к задаче [6]: найти регулярное в области
решение уравнения (1), непрерывное вместе с производной
в замкнутой области
и удовлетворяющее граничным условиям (4) и
.
Решение этой задачи задается формулой :
где – функция Грина этой задачи для уравнения
. (28)
Функция Грина выражается через фундаментальные решения уравнения (28), которые имеют вид:
где ;
;
– функция Бесселя. Функции
,
называются функциями Эйри и удовлетворяют уравнению
. Основные свойства функций
и
, их оценки вместе с частными производными порядка больше 1, приведены в [7].
Список литературы