Статья: Основные теоретические положения органической химии. Насыщенные (предельные) углеводороды
По способности атомов соединяться друг с другом в длинные цепи углерод занимает особое положение в периодической системе. Углерод может соединяться почти со всеми химическими элементами с образованием молекул цепной и циклической (кольчатой) структуры самых различных размеров. В состав цепей и циклов молекул органических соединений, кроме атомов С, могут входить Н, О, S, N, P, As, Si, Ge, Sn, Pb, B, Ti и другие элементы.
Органическая химия – это химия соединений углерода, атомы которого связаны с атомами других элементов ковалентными, преимущественно мало поляризованными связями.
Органические соединения, или соединения углерода, отличаются от неорганических многочисленностью и многообразием превращений. Если неорганических соединений насчитывается порядка 200 тысяч, то органических соединений известно свыше 2 миллионов.
Законы химии управляют поведением как неорганических, так и органических веществ. Однако органические соединения имеют ряд отличительных особенностей. Так, большинство неорганических соединений – тугоплавкие вещества, а для органических соединений характерно состояние газов, жидкостей и низкоплавких твердых тел; большинство неорганических соединений не горючи, органические легче окисляются и горят, чем неорганические.
К низкомолекулярным относят органические соединения с длиной цепи от 2 до 50 углеродных атомов, к высокомолекулярным – с длиной цепи порядка 200-200000 углеродных атомов и молекулярным весом порядка 104-106 у.е.
Органические соединения при длине цепи порядка 200 атомов углерода обладают уже смолоподобными и каучукоподобными свойствами.
Если цепи атомов кислорода, азота, фосфора, серы, бора и других элементов мало устойчивы, то длинные цепи атомов углерода в силу большой энергии С-С - связи (339 КДж) - весьма устойчивы.
Области применения
Лекарственные вещества.
Высокомолекулярные органические соединения: синтетические смолы и органическое стекло; пластические массы (пластмассы) и синтетические волокна; синтетический каучук.
Красящие вещества (красители).
Гербициды (вещества, уничтожающие сорняки).
Инсектициды и фунгициды (вещества, уничтожающие, соответственно насекомых и грибы).
Дефолианты (вещества, ускоряющие опадение листьев; применение их укоряет созревание хлопчатника и облегчает машинную уборку).
Десиканты (соединения, способствующие высушиванию растений на корню).
Витамины (сложные физиологически активные органические вещества, отсутствие которых в пище человека или животных ведет к нарушению нормальных функций организма).
Ферменты (сложные органические соединения, являющиеся биологическими катализаторами, вызывающими процессы брожения, расщепления жиров, белков и т.п.)
Консерванты (органические вещества, предохраняющие от закисания и порчи вина, соки, варенья, маринады и другие пищевые продукты).
Органическая химия достигла огромных успехов в изучении состава и переработке каменного угля, нефти и природного газа; таким образом, она тесно связана с угольной, нефтяной и газовой отраслями промышленности, обеспечивающими с одной стороны, получение различных видов топлива, с другой – сырьем различные производства. Так, каменный уголь используют не только как топливо, путем переработки из него добывают необходимый для металлургии кокс, а так же светильный газ и каменноугольный деготь. Последний, свою очередь служит источником для получения многочисленных органических соединений, необходимых для синтеза ВМС, красителей, лекарственных и взрывчатых веществ и т.п. Из нефти путем её перегонки получают различные виды горючего, смазочные материалы и другие ценные продукты. Природный газ, особенно попутный нефтяной газ, также представляет собой ценное химическое сырье и топливо, используемое как в промышленности, так и в быту.
Теория химического строения
Создана в 1858-1861 г.г. в русским химиком А. М. Бутлеровым.
Основные положения теории химического строения:
Молекулы веществ - представляют собой реально существующие материальные частицы, обладающие определенным химическим строением. Т.е. атомы, образующие их, соединяются друг с другом в определенной, характерной для каждого вещества последовательности и взаимно влияют друг на друга.
Строение молекул вещества познаваемо и может быть установлено путем изучения свойств вещества, продуктов его превращений, а также путем его разложения и синтеза.
Свойства вещества определяются его качественным и количественным составом и химическим строением его молекул. Вещества, имеющие одинаковые состав и молекулярный вес, но различное строение, отличаются по своим свойствам; в этом заключается явление изомерии.
Взаимное влияние атомов, образующих молекулу, определяет реакционную способность каждого из них; химический характер одних и тех же атомов в различных молекулах зависит от того, с какими атомами они связаны в данной молекуле.
Углерод в органических соединениях, как правило, четырехвалентен; атомы его способны соединяться не только с другими атомами, но и друг с другом, образуя цепи; последние могут замыкаться с образованием циклов. Это свойство углерода и явление изомерии и обуславливают многообразие органических веществ.
В развитии и обосновании теории химического строения большую роль сыграли русские химики – ученики и последователи А.М. Бутлерова: В.В. Марковников, А.М. Зайцев, Е.Е. Вагнер, Н.Д. Зелинский, М.И. Коновалов, А.Е. Фаворский и др.
Электронное строение органических соединений
Характер связей в органических соединениях
Для молекул органических соединений наиболее характерны ковалентные связи. Как известно, атом углерода имеет четыре валентных электрона. В соответствии с его положением в периодической системе элементов (2 период, I группа, порядковый номер 6) углерод прочно удерживает электроны в своем внешнем слое и в то же время не склонен отнимать электроны у других атомов. Поэтому связь атомов углерода с атомами различных элементов и друг с другом осуществляется путем образования обобщенных пар, т.е. при помощи ковалентных связей. Электронные структурные формулы, например, простейших углеводородов – метана и этана – имеют следующий вид (для сравнения рядом с ними приведены обычные структурные формулы):
Н Н Н Н Н Н
. . ½ . . . . ½½
Н : C : Н Н¾C¾Н Н : C : C : Н Н¾C¾C¾Н
--> ЧИТАТЬ ПОЛНОСТЬЮ <--