Статья: Основные теоретические положения органической химии. Насыщенные (предельные) углеводороды
>C=C—C=C< >C=C—C=O >C=C—N=O
úúúúú
В сопряженных системах электроны p-связей находятся в поле всех углеродных ядер и поэтому изменение распределения электронов в одной части молекулы вызывает перегруппировки электронов во всех других ее частях, как в едином целом.. Такой тип взаимодействия атомов называют сопряжением связей.
Органические молекулы с достаточно хорошо развитой системой сопряженных связей проявляют полупроводниковые свойства.
Индуктивный эффект и типы заместителей
Развивающаяся на основе современной квантовой механики электронная теория позволила глубже подойти к закономерностям взаимного влияния атомов в молекулах. Рассматривая проявления взаимного влияния атомов как результат различных типов смещения электронов межатомными связями, можно объяснить направление многих реакций и превращений молекул.
В молекулах, построенных из одинаковых атомов и атомных групп, электронная пара ковалентной связи равномерно распределена между ядрами (остовами атомов):
Cl—Cl; Br—Br; CH3—CH3
Взаимное влияние атомов обусловливает полярность и поляризуемость связей в органических молекулах. Электрическая асимметрия ковалентной связи в органических молекулах, построенных из атомов с различной ЭО, изменяет состояние связей и заряды всех атомов молекулы.
Если в органической молекуле атом водорода заменить на атом, обладающим более высоким сродством к электрону, то этот атом не только оттягивает пару общих электронов с непосредственно связанных углеродных атомов, но и вызывает смещение электронных пар у более удаленных атомов:
С®С¾®С—¾®Х
Этот тип взаимного влияния атомов называется индукдуктивным эффектом. Индуктивный эффект атомов и атомных групп может быть отрицательным (—J) и положительным (+J). Эталоном сравнения является водород, индуктивный эффект которого принят за нуль. –J - эффект проявляют заместители, обладающие большим сродством к электрону, чем водород. +J - эффект проявляют заместители с меньшим электронным сродством:
Y—CR3 H—CR3 X—СR3
+J - эффект стандарт —J - эффект
(Y=Si /1,8/; P/2,1/) (H=0 /ЭО=2,1/) (X=N/3,0/; O/3,5/; F/4,0/; Cl/3,0/)
При индуктивном эффекте взаимное влияние атомов передается вдоль углеродной цепи с силой, затухающей по мере удаления от атома, притягивающего или отталкивающего электроны.
Сопоставление констант диссоциации органических кислот позволяет раскрыть индуктивное влияние заместителей на силу кислот. Так, в хлоруксусной кислоте атом хлора и карбоксильная группа имеют отрицательный индукционный (—J) - эффект и потому оттягивают к себе электроны. Влияние атома хлора через углеродную цепь на карбоксильную группу усиливают протонирование атома водорода этой группы и тем самым увеличивает диссоциацию кислоты.
Если константа диссоциации уксусной кислоты К=1,82×10-5, то у хлоруксусной кислоты она в 85 раз больше (К=155×10-5). Дальнейшее замещение атомов водорода в углеводородном радикале уксусной кислоты атомами хлора с (—J) - эффектом вызывает резкое повышение кислотных свойств:
Уксусная кислота CH3—CОOH 1,82×10-5;
Монохлоруксусная кислота CH2Cl—CОOH 155×10-5;
Дихлоруксусная кислота CHCl2—CОOH 5000×10-5;
Трихлоруксусная кислота CCl3—CОOH 30000×10-5.
Если заместители, обладающие (-J)-эффектом, отделены от карбоксильной группы увеличивающимся числом метиленовых групп, которые являются плохими проводниками электронных влияний, то диссоциация кислот должна уменьшиться. Константы диссоциации a-, b- и g-хлормасляных кислот показывают постепенное затухание индукционного эффекта по цепи атомов:
a-хлормасляная кислота CH3—CH2—CHCl—CОOH 139×10-5;
b-хлормасляная кислота CH3—CHCl—CH2—CОOH 8.9×10-5;
g-хлормасляная кислота СН2Cl—CH2—CH2—CОOH 3×10-5.
Величина (—J)-эффекта возрастает с увеличением номера группы периодической системы и уменьшается для элементов одной и той же группы с повышением порядкового номера элемента. При этом атомы, обладающие кратными связями, сильнее притягивают электроны, чем соответствующие атомы с ординарными связями.
Величина (+J)-эффекта возрастает с повышением порядкового номера элемента.
Поляризуемость связей зависит от энергетического состояния электронов и тем больше, чем больше главное квантовое число (n) элементов, участвующих в образовании связи. Подвижность электронов одного и того же квантового уровня определяется орбитальным квантовым числом (l).
Реакции органических веществ