Статья: Спектр спиновых волн в антиферромагнетиках с неколлинеарными магнитными подрешетками
Как известно, кристалл приближенно имеет коллинеарную антиферромагнитную структуру [1, 2]. Ряд экспериментальных работ указывает на наличие слабого ферромагнитного момента в плоскостях , направленного перпендикулярно плоскости и имеющего противоположные направления в соседних плоскостях [3, 4]. Ферромагнитный момент возникает при выходе магнитных моментов ионов из базисной (001) плоскости при повороте их на небольшой угол вследствие поворота октаэдров в ортофазе. Другими словами, магнитные моменты подворачиваются в плоскости (010) на малый угол [5]. Но поскольку в соседних плоскостях октаэдры развернуты в противофазе, это приводит к противоположной направленности ферромагнитных моментов в соседних плоскостях, что означает, антиферромагнитную модуляцию вдоль оси [001]. Из исследований инфракрасных спектров, неупругого рассеяния нейтронов и двухмагнонного рассеяния света определена величина угла скоса, которая оказалось равной [4, 6].
Исследуем влияние неколлинеарности магнитных подрешеток на спектры спиновых волн в кристалле как поправку к спектру, найденному в работе [7].
Будем исходить из гамильтониана, в котором учитывается энергия магнитной системы:
, (1)
,
где - тензор однородного обменного взаимодействия, - тензор анизотропии, - тензор неоднородного обменного взаимодействия, - намагниченности подрешеток, , . Тензор выберем в виде
,
где I - постоянная внутриплоскостного взаимодействия (в CuO2 - плоскости), , - постоянные межплоскостного взаимодействия.
Далее ввиду эквивалентности подкластеров можно ввести следующую систему обозначений:
,
, ,
.
Аналогичных обозначений будем придерживаться и для компонент тензоров c учетом соотношения из орторомбичности кристаллической структуры
, , .
Эксперименты по неупругому нейтронному рассеянию дают значение для постоянной внутриплоскостного обменного взаимодействия [8] и верхнюю оценку для постоянных межплоскостного обменного взаимодействия . Приведенные экспериментальные данные позволяют считать в нашем приближении .
Запишем гамильтониан (1) в представлении приближенного вторичного квантования. Намагниченности подрешеток можно выразить через операторы Гольштейна-Примакова:
, (2)
(2.1)
где - равновесная намагниченность - той подрешетки, , g - фактор Ланде, - магнетон Бора.
Подставляя (2) в (1) и переходя к фурье-представлению операторов
,
получим:
, (3)
, (3.1)
. (3.2)
Перейдем к исследованию конкретного случая. Введем сферические координаты базисных векторов (2.1). Учитывая малую величину угла откоса, напишем:
, , ,
, ,
--> ЧИТАТЬ ПОЛНОСТЬЮ <--