Статья: Статистический анализ показателей использования производственных ресурсов

В нашей работе использован метод пошагового включения факторных признаков.

Эконометрические модели производственных функций, основанные на линейной зависимости

Для всех рассматриваемых групп полиграфических предприятий (предприятия в целом; газетные предприятия; книжно-журнальные предприятия) характерно, что наибольшую корреляцию с размерами выручки демонстрирует фактор численности работающих, а наименьшую - фактор производственной площади. Это свидетельствует о том, что до настоящего времени именно живой, а не овеществленный труд играет главенствующую роль в российских типографиях.

Однофакторные линейные модели обычно интерпретируют таким образом, что коэффициент при аргументе показывает, на сколько единиц увеличится значение результативного признака, если значение факторного признака возрастет на единицу.

Если следовать этому правилу, то увеличение штата персонала на одного работника принесет газетным предприятиям в среднем 178,71 тыс. руб. дополнительной выручки, книжно-журнальным - 219,32 тыс. руб., а по всем предприятиям в целом 203,10 тыс.руб. При этом коэффициент детерминации оказывается самым большим по группе книжно-журнальных предприятий (0,924), меньше других - по группе газетных предприятий (0,579). Для группы всех предприятий он составил 0,874.

Введение второго факторного признака - собственного капитала - увеличивает детерминацию моделей: по группе книжно-журнальных предприятий на 2,8 процентных пункта, по газетным предприятиям - на 9,7 процентных пункта, по группе всех предприятий - на 3,0 процентных пункта. При этом происходит перераспределение обусловленности вариации результативного признака между факторными признаками, включенными в модель.

Так, в однофакторной модели по группе всех предприятий 87,4% всех изменений выручки объяснялось изменением численности работающих. В двухфакторной же модели "ответственность" за вариацию результативного фактора передается частично фактору собственного капитала. За счет этого частная детерминация фактора численности работающих снижается до 67,2%. Коэффициент парной корреляции между факторными признаками довольно велик - 0,780 (табл.3), и это означает, что определенная мультиколлинеарность имеет место. Однако характерно то обстоятельство, что при введении в экономическую модель двух факторов, каждый из них "теряет в весе" по сравнению с однофакторной моделью неодинаково: фактор численности, как уже отмечалось,с 87,4 до 67,2%, то есть на 20,2 процентных пункта, а фактор собственного капитала - с 70,1 до 23, 1%, или на 47,0 процентных пунктов. То же самое наблюдается и по группам газетных и книжно-журнальных предприятий. Следовательно, можно говорить, что двухфакторные модели дают более объективную картину, нежели однофакторные в части определения уровня влияния факторных признаков, но небольшое увеличение коэффициента общей детерминации свидетельствует о том, что с ростом числа факторных признаков качество модели улучшается незначительно.

Об этом же говорит и то, что лишь для группы книжно-журнальных предприятий введение в модель третьего фактора привело к увеличению коэффициента общей детерминации, и то только на 0,4 процентных пункта, что в принципе находится в зоне погрешности эксперимента, и серьезных выводов на этом измерении строить нельзя.

Таким образом, при использовании линейной формы производственной функции и трех рассмотренных факторных признаков рационально рассматривать двухфакторную эконометрическую модель зависимости выручки от факторов численности работающих и собственного капитала.

Эконометрические модели производственных функций, основанные на степенной зависимости

В отличие от моделей, построенных на линейных зависимостях, модели, использующие степенную функцию, существуют исключительно в области положительных значений результативного признака, если масштабирующий коэффициент а0, входящий в уравнение, больше 0. Если а0 < 0, модель просто неприменима.

Как и в случае линейных зависимостей, наибольшую коррелированность с результативным признаком показывает фактор численности работающих, а наименьшую - фактор производственных площадей. Введение второго факторного признака (собственный капитал) сильнее всего увеличивает уровень детерминации по группе газетных предприятий, в существенно меньшей степени по группам книжно-журнальных и всех предприятий. С добавлением третьего фактора (производственные площади) степень детерминированности моделей снижается.

Исходя из этого в производственную функцию, формируемую на основе степенной зависимости, включаются два фактора: численность работающих и собственный капитал.

Частные коэффициенты детерминации показывают, что аналогично предыдущему случаю большая часть вариации выручки предприятий обусловлена изменениями в численности работающих, меньшая часть - изменениями в размере собственного капитала, и еще меньше приходится на долю неучтенных факторов.

Сравнительный анализ эконометрических моделей производственной функции

Для облегчения сравнительного анализа в табл. 6 перенесены из таблицы 5 сопоставляемые модели с указанием значений общего и частных коэффициентов детерминации. В таблице 7 представлены показатели, рассчитанные на основе рассматриваемых эконометрических моделей. На рис. 1-3 показаны фактические и расчетные значения результативного признака - выручки от реализации продукции, определенные по эконометрическим моделям.

Табл. 6 не дает весомых оснований для предпочтительного выбора модели, построенной на той или другой зависимости, и поэтому следует искать дополнительные аргументы в пользу какой-либо из них.

Сравнение показателей двухфакторных эконометрических моделей производственной функции по данным табл. 7 свидетельствует о том, что модели, построенные на степенной зависимости, в большинстве случаев характеризуются более умеренными показателями, чем модели линейного типа.

Показатели моделей для рассматриваемых групп предприятий, естественно, отличаются друг от друга. Так же естественно предположить, что значения показателей модели для группы всех предприятий, включающей в себя и газетные, и книжно-журнальные предприятия, должны находиться в диапазоне между соответствующими значениями, рассчитанными по моделям отдельно для группы газетных и для группы книжно-журнальных предприятий. Модель на основе степенной зависимости это предположение подтверждает, чего нельзя сказать о модели линейного типа. По всей вероятности, модели подобного рода более чувствительны к составу исходной информации, чем модели степенного вида: не следует забывать, что в группу всех предприятий входят помимо указанных и типографии иной специализации.

Поскольку все модели с точки зрения детерминированности в общем случае достаточно близки, что подтверждается также графиками, приведенными на рис. 1-3, то для оценки текущего положения конкретного предприятия относительно других в данном секторе полиграфии можно использовать и ту, и другую модель, не опасаясь грубой качественной ошибки. Другое дело - определить, в каком направлении и в каких масштабах использовать производственные ресурсы, включенные в модель, для повышения своей конкурентоспособности на рынке полиграфических работ. Для этого модель должна быть хорошо интепретируемой.

С этих позиций модели линейного типа имеют по крайней мере два существенных недостатка. Один из них - возможность получения отрицательных значений результативного признака. На рис. 1 и 3 это наглядно видно. Второй недостаток состоит в том, что результативный признак, выручка от реализации продукции, обладает какой-то величиной даже при нулевых значениях производственных ресурсов, играющих в модели роль факторных признаков. И если представить, что бездействующее предприятие приносит отрицательную выручку еще как-то можно, то положительный доход от такой ситуации обосновать довольно трудно. К этому можно добавить, что и в литературе встречается указание на то, что одним из свойств производственной функции является прохождение ее графика через начало координат, (9) свидетельствующее о невозможности выпуска продукции без использования производственных ресурсов.

Исходя из сказанного, надо признать, что модели производственной функции линейного типа имеют ограниченную область применения. Поэтому в дальнейшем изложении рассматриваются модели, построенные на степенной зависимости.

Производственная функция (10) на основе степенной зависимости

В табл. 8 представлены переводные коэффициенты, позволяющие переходить от одного показателя к другому. Хорошо видно, что показатели связаны между собой линейной или пропорциональной зависимостью, причем в большинстве случаев в расчетах участвуют факторные признаки, принимающие те или иные значения. Это означает, что величина показателей производственной функции зависит от размеров используемых ресурсов, и, следовательно, для каждого предприятия, входящего в ту или иную совокупность, значения показателей будут индивидуальными.

Данные, зафиксированные в табл. 7, получены исходя из среднегрупповых значений факторных признаков и коэффициентов уравнений степенной зависимости, приведенных в табл. 6.

К-во Просмотров: 426
Бесплатно скачать Статья: Статистический анализ показателей использования производственных ресурсов