Статья: Використання енергії хвиль системою осцилюючих поверхневих розподілів тиску

Отже:


де використано (А25) і зроблена проста заміна змінної інтегрування. Тут

Pw=1/4w-1rg2A2 .

Окрім цих тривимірних результатів також можна отримати важливі двовимірні взаємовідношення для розподілів тиску. Рівняння (А2) - (А14) залишаються тими ж самими, але тепер (А15) потрібно замінити:

де рух відбувається в площині (x, z) . Подібно (А16) стає:

і функція Коші тепер визначена тільки для кутів b рівних 0 чи p. Попередній аргумент рухається маленькими кроками і результати в двовимірній області відповідають (А24), (А25), (А26) є:

Рівняння для Hі (0) в (А32) відповідають набігаючій хвилі gАw-1 exp [- ikx + kz] з x=+¥, з qdі (p) , які відповідають об’єму потоку через Sі .

З (А31) і (А32) випливає, що:

Показує, що цьому у двовимірній області також вимушений потік через Sі за допомогою набігаючої та дифрагованої області пропорційний амплітуді випромінюваного потенціалу в далекій області в напрямку, в якому прибуває набігаюча хвиля. В (А34) qdi – об’єм потоку в одиниці ширини поверхневого тиску. Подальші відношення між властивостями рішення yі задачі потужності випромінювання та фd, рішенням дифракційної задачі в і дво- та тривимірних областях також можна отримати використанням функцій Коші та теореми Гріна. Зокрема, нові відношення, доведені Ньманом (1976), рівняння (48), (49)), переносяться на розподіли тиску без змін. Вони не подані тут, оскільки метод доведенняу ідентичний і вони не є необхідними в існуючому контексті.

З цього випливає, що всі результати, які зв’язують властивості вимушеного руху твердого тіла в даному с?

К-во Просмотров: 274
Бесплатно скачать Статья: Використання енергії хвиль системою осцилюючих поверхневих розподілів тиску