Учебное пособие: Биоэнергетика сердца
ОБЩЕОБРАЗОВАТЕЛЬНАЯ ЛЕКЦИЯ
НА ТЕМУ: «БИОЭНЕРГЕТИКА СЕРДЦА»
РАПОВЕЦ В.А., врач-кардиолог
СОДЕРЖАНИЕ
Общие положения
Вступление
Аэробное окисление глюкозы и ЖК
Митохондрии
Транспорт Е Заключение
Общие положения
Современная кардиология немыслима без изучения процессов на молекулярном и субмолекулярном уровнях. Только благодаря современным тонким методам исследования стали возможны открытия в области такой науки, как биоэнергетика сердца.
Одна из функций, присущих всему живому, - способность к энергообеспечению за счет от
тех или иных внешних энергетических ресурсов. Это и изучает биоэнергетика. Само слово вошло
в обиход с легкой руки А. Сцепт – Дьерди, прославившегося в свое время выделением первого витамина – аскорбиновой кислоты. Так называлась небольшая книжка, опубликованная А. Сцепт –
Дьерди в 1956 г. В этом труде было множество увлекательных мыслей и гипотез, но испытание
временем выдержало лишь слово, вынесенное автором на обложку.
Сначала в некоторых биологических центрах появились лаборатории, отделы биоэнергетики (отдел МГУ был создан в 1965 г.). Затем с конца 60-х годов стали издаваться журналы и сборники, пошли симпозиумы, конференции, курсы под этим названием. И вот сегодня биоэнергетика
– одно из популярных научных направлений со своим кругом идей, объектов и методов, своими
лидерами и соперничающими школами; словом, - интернациональный организм, живущий и развивающийся по собственным законам.
Вслед за известными успехами этой ветви биологии пришла мода и появилась тенденция
писать слово «биоэнергетика» во всех случаях, где идет речь об энергетическом аспекте живых
существ, невзирая на степень их сложности. В этом смысле первым биоэнергетиком нужно признать Платона, размышлявшего о судьбе пищи в организме. Что же до современных исследователей, пытающихся добыть точные сведения о биологических преобразователях Е , то их правильнее
называть «молекулярными биоэнергетиками».
Сейчас непосредственно о биоэнергетике сердца.
Вступление
Энергетический метаболизм клеток сердца включает в себя 3 раздела:
1–й раздел: процессы аэробного окисления глюкозы и ЖК , которые приводят к образованию АТФ в митохондриях;
2–й раздел: процесс внутриклеточного транспорта Е ;
3–й раздел: реакции использования Е:
а) для сокращения миофибрилл;
б) перенос ионов против градиента их концентрации через клеточные мембраны;
Примечание . Эти два процесса взаимосвязаны и их рассмотрим вместе
Сейчас перейдем к первому большому разделу: образованию энергии.
1–й раздел: процессы аэробного окисления глюкозы и ЖК
Источником биологической Е для организма служит пища, в которой эта Е заключена в
химических связях сложных соединений, главным образом, - в связях С-С и С-Н .
Биохимические процессы, производящие Е, можно подразделить на 2 группы:
1-я группа: процессы, идущие с поглощением О 2 воздуха;
2-я группа: без доступакислорода.
Биологический синтез любой химической связи требует в 3 раза больше Е, чем может образоваться при простом расщеплении подобной связи. Поэтому организм прибегает к обходному пути, чем достигает больший кпд.
Аэробный путь был открыт в 30-х годах Энгельгардтом и назван окислительным фосфорилированием, потому что на промежуточных этапах окисления освобождающаяся Е фиксируется в
пирофосфатных связях молекул АТФ и других соединений. Эти связи Энгельгардт назвал макроэргическими – т.е., высокоэнергетическими. АТФ и ее аналоги играют роль универсального аккумулятора Е в организме. В этом соединении Е концентрируется в удобной форме, пригодной для
утилизации. Процессы, идущие с выделением Е , связаны с синтезом АТФ. Процессы с поглощением Е сопряжены с расщеплением АТФ. Таким образом, АТФвыступает связующим звеном
между ними. Благодаря АТФ, 2 процесса расчленяются во времени. Это придает Е -обмену большую гибкость. Е – законсервирована и может расходоваться в любое время и на любые нужды.
АТФ не только посредник, но и депо Е . Во время работы количество АТФ уменьшается,
идут реакции гликолитического фосфорилирования: увеличиваются АДФ, АМф, фосфат неорганический. После нагрузки уровень АТФ восстанавливается.
Роль запаса Е и донора фосфатов для АТФ играет также другой макроэрг – КФ. КФ не поставляет Е для клетки, а обменивает свой фосфат с АТФ. Реакция протекает по уравнению:
Креатин + АТФ кфк КФ + АДФ
При энергообразовании реакция идет вправо, идет запас КФ. При потреблении Е – влево – увеличение АТФ. Все субклеточные структуры сердца, которые потребляют Е (миофибриллы,
мембраны), - содержат КФК (ММ - изофермент), сопряженную с АТФ –азными реакцими.
Аэробный путь энергетически более выгодный. Первые его этапы совпадают с гликолизом
– до стадии образования ПВК. Но в присутствии О 2 ПВК не превращается в МК, а вступает в цикл
трикарбоновых кислот Кребса. В цикле Кребса при окислении пирувата образуется 1 макроэргическая связь, сохраняемая в молекуле ГТФ, который передает ее на АТФ. Такое фосфорилирование
называется субстратным.
Вся остальная Е , содержащаяся в субстратах цикла Кребса передается без потерь на ферменты НАД и НАДФ, и фиксируется в их эфирных связях.
Дальнейшее окисление этих коферментов через флавиновые ферменты и цитрохромную систему называется терминальным . Это самый выгодный участок дыхательной цепи, так как
здесь идет больше всего реакций окислительного фосфорилирования. Здесь образуется 3 молекулярных АТФ. Таким образом, Е субстратов цикла Кребса переходит в Е АТФ.
Почти все остальные субстраты имеют неуглеводную природу:- аминокислоты, ЖК, -подвергаясь ферментативным превращениям, образуют либо метаболиты цикла Кребса, или А –
Ко – А (активированная форма уксусной кислоты).
В итоге – превращение Е идет или с окислением ПВК или АКоА. 1 молекула ПВК дает 15
макроэргических связей.
Сейчас рассмотрим, как работают митохондрии.
Митохондрии
--> ЧИТАТЬ ПОЛНОСТЬЮ <--