Учебное пособие: Элементы кинетической теории газов и вероятностные модели

Если диаметр области мал, то приближённо — количество молекул, скорость которых лежит в малой окрестности точки , даётся формулой

.


С вероятностной точки зрения скорость молекулы идеального газа можно рассматривать как случайную величину, спектр значений которой совпадает с , а плотность распределения равна .

Символически это записывается так:

,

и читается так: вероятность того, что случайный вектор принадлежит области из , равна интегралу по от — плотности распределения случайного вектора .

Понимать это утверждение следует так. Пусть наблюдатель произвёл n статических испытаний, т.е. n раз замерил скорость отдельной молекулы (первой попавшейся) из числа тех, что заполняют наш цилиндр. И пусть— число тех молекул, скорость которых попала в . Тогда . (Сравнить с бросанием монеты !). Плотность распределения — функция трёх переменных, компонент вектора, где – орты координатных осей декартовой системы координат.

Наряду со случайным вектором введём в рассмотрение скалярную случайную величину, равную проекции вектора скорости на некоторую прямую , и её плотность распределения . Естественно предположить, что вид функции не зависит от направления прямой, задаваемого ортом . Это означает, в частности, что компоненты вектора (проекции на орты ) – случайные величины имеют одну и ту же плотность распределения .

Между и существует связь:


, поскольку

для произвольного интервала на координатной оси .

Действительно, стоящий слева интеграл равен доле молекул ПТДС, первая компонента скорости которых принадлежит интервалу , а и могут принимать любые значения. Ведь условие не накладывает на них никаких ограничений. Именно поэтому справедливо равенство (**), а вместе с ним и (*).

Итак, – доля молекул, первая компонента которых принадлежит окрестности значения первой компоненты скорости . Тогда – доля молекул, у которых дополнительно известно, что вторая компонента скорости принадлежит окрестности точки на второй координатной оси (при том, что первая …).

Аналогичным образом есть доля молекул, вектор скорости которых принадлежит прямоугольному параллелепипеду с рёбрами вокруг точки . Но тот же смысл имеет и выражение , откуда мы получаем соотношение

.

На языке теории вероятностей такое равенство означает независимость случайных величин, представляющих собой компоненты вектора скорости молекулы идеального газа в декартовой системе координат в условиях термодинамического равновесия. Метод получения этого равенства не представляет собой доказательства, а лишь объясняет мотивы, по которым оно принимается нами за постулат.

Ясно, что по своему смыслу функции и удовлетворяют условиям:

1) ,

2) ,

3)

и, аналогично (как следствие),

1) ,

2) .

Упражнение. Показать, что зависит только от или, что всё равно, от .

Далее будет найдено явное выражение для функций и .

3. Давление газа на стенки и уравнение состояния идеального газа

При упругом соударении молекулы с поршнем происходят следующие события:

1) первая компонента вектора , которая до столкновения была положительной, сохраняя свою абсолютную величину, меняет знак на противоположный, т.е. вектор после соударения превращается в вектор

2) для неподвижной стенки закон сохранения импульса, даёт равенство, где – сила, действующая на поршень со стороны молекулы в процессе соударения, – импульс, который приобрела стенка в процессе соударения.

К-во Просмотров: 299
Бесплатно скачать Учебное пособие: Элементы кинетической теории газов и вероятностные модели