Учебное пособие: Информационно-методическое письмо об учебнике-тетради по математике для учащихся 3 класса четырехлетней начальной школы
24. Найди площадь земельного участка со стороной 6 м. Вычисли периметр этого участка. Сравни, как узнали площадь и периметр этого участка?
25. Начерти в дополнительной тетради прямоугольник со сторонами 7 и 6 см и квадрат со стороной 7 см. Определи их площадь. Узнай, площадь какой фигуры больше и на сколько?
26. Длина прямоугольного участка 15 м, а ширина 6 м. Вычисли его площадь и периметр. Сравни их:
27. Площадь квадратного участка 100 м2. Определи периметр этого участка. Начерти чертеж к задаче и реши ее в дополнительной тетради.
28. Составь задачи по чертежу и числовым данным и реши их:
29. Длина участка прямоугольной формы 90 м, ширина составляет 1 /10 часть от длины. 1 /3 всей площади занята капустой, остальная часть - картофелем. Какая площадь занята картофелем? Построй чертеж в дополнительной тетради и реши ее.
30. 1 /3 участка прямоугольной формы засажена капустой, что составляет 270 м2 , остальная часть участка занята картофелем. Какая площадь занята под картофель? Построй чертеж в дополнительной тетради и реши ее.
31. Определи, как изменяется площадь от увеличения или уменьшения длины ее сторон:
? п/п | Длина участка | Ширина участка | Площадь участка |
1. | 50 м | 10 м | |
2. | 100 м | 10 м | |
3. | 10 м | 10 м | |
4. | 50 м | 20 м | |
5. | 50 м | 5 м |
Если длина одной из сторон увеличивается в несколько раз, то площадь ... во столько же раз. Если длина одной из сторон уменьшается в несколько раз, то площадь ... во столько же раз.
III. Составные уравнения
С простейшими уравнениями вида: х + 35 = 70, 60 - х = 32,
х - 15 = 46, х . 3 = 27 и приемами их решения учащиеся познакомились еще во втором классе. Поэтому в третьем классе вводятся составные уравнения вида:
х : 7 . 9 + 250 = 340
Учащиеся решают составные уравнения на основе знания взаимосвязи между компонентами и результатами действий. Главное затруднение для учащихся третьего класса при решении уравнений этого вида - назвать неизвестный компонент действия, который выражен еще двумя, тремя простыми уравнениями. Например, при решении уравнения вида: х : 7 . 9 + 250 = 340 ученик должен рассуждать так: <Последнее действие - сложение. Неизвестно слагаемое>. Ученику сложно понять, что х : 7 . 9 - это слагаемое, поэтому для решения составного уравнения предлагается прием преобразования составного уравнения в цепочку взаимосвязанных простых уравнений вида:
х : 7 . 9 + 250 = 340.
Учитель спрашивает: <Сколько действий в этом уравнении?>. (Три).
Запишем отдельно в каждом прямоугольнике компоненты каждого действия:
Сколько простых уравнений в составном? (Три.)
Почему оставлены свободные клетки? (Потому, что неизвестны компоненты этих действий).
Чтобы решить простое уравнение, сколько чисел надо знать? (Два).
В каком уравнении известны два числа? (В последнем).
С последнего действия и начнем решать уравнение.
Какой компонент действия неизвестен? (Первое слагаемое).