Учебное пособие: Кинематика и динамика поступательного движения
Промахи и грубые погрешности, – чрезвычайно большие ошибки, явно искажающие результаты измерения. Этот класс погрешностей вызван чаще всего неправильными действиями наблюдателя. Измерения, содержащие промахи, следует отбросить.
Для оценки полной погрешности необходимо знать и случайную и систематическую погрешности.
2. Оценка точности результатов одного прямого измерения
Если при повторении измерений в одних и тех же условиях 3 – 4 раза получено одно и то же значение, то это означает, что измерения не обнаруживают случайных изменений, а погрешность обусловлена только систематической погрешностью . Систематическая погрешность в данном случае определяется погрешностями измерительных приборов и часто называется инструментальной или приборной погрешностью . Есть несколько способов задания этой погрешности:
а) Для некоторых приборов инструментальная погрешность дается в виде абсолютной погрешности. Например, для штангенциркуля, в зависимости от конструкции его нониуса,– 0,1 мм или 0,05 мм , для микрометра – 0,01 мм .
б) Для характеристики большинства измерительных приборов часто используют понятие приведенной погрешности d п (класса точности) .
Приведенная погрешность – это отношение абсолютной погрешности D х к предельному значению хпр измеряемой величины (т.е. к наибольшему её значению, которое может быть измерено по шкале прибора). Приведенная погрешность обычно дается в процентах:
. (3)
По величине приведенной погрешности приборы разделяют на семь классов: 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4 .
Зная класс прибора, можно рассчитать его абсолютную погрешность. Например, вольтметр имеет шкалу делений в пределах от 0 до 300 В (хпр =300 В) и класс точности 0,5 . Тогда
.
в) В некоторых случаях используется смешанный способ задания инструментальной погрешности. Например, весы технические (Т–200) имеют класс точности 2 . В то же время указывается, что при нагрузке до 20 г абсолютная погрешность равна 5 мг , до 100 г – 50 мг , до 200 г – 100 мг . Набор школьных гирь относится 4-му классу точности, а допустимые погрешности масс гирь указаны в таблице 1.
Таблица 1
Номинальное значение, г | 100 | 50 | 20 | 10 | 5 | 2 | 1 |
Абсолютная погрешность, мг | +40 | +30 | +20 | +12 | +8 | +6 | +4 |
Номинальное значение, г | 500 | 200 | 100 | 50 | 20 | 10 | 5 |
Абсолютная погрешность, мг | ± 3 | ± 2 | ± 1 | ± 1 | ± 1 | ± 1 | ± 1 |
Если, например, при взвешивании на таких весах с таким набором гирь получено значение массы тела 170 г (100 г + 50 г + 20 г) , то абсолютная погрешность взвешивания равна: D х = 40 + 30 + 20 + 100 = 200 (мг)=0,2(г).
г) В тех случаях, когда класс точности прибора не указан, абсолютная погрешность принимается равной половине цены наименьшего деления шкалы прибора . Так при измерении линейкой, наименьшее деление которой 1 мм, абсолютная погрешность равна 0,5 мм.
3. Статистический анализ случайных погрешностей
Пусть при повторении измерений одной и той же физической величины х в одинаковых условиях получены различные значения: x1 , x2 , …, x n . Это означает, что есть причины, приводящие к случайному «разбросу» измеряемой величины xi (помехи, трение и т. п.). В этом случае наилучшей оценкой измеряемой величиныявляется среднее арифметическое значение найденных значений xi
, (4)
где n - число измерений.
При наличии случайных погрешностей появление того или иного значения величины xi является случайным событием. Вероятность появления того или иного значения чаще всего определяется законом нормального распределения Гаусса . Распределение случайных погрешностей также чаще всего бывает нормальным. Поэтому распределение Гаусса может быть записано и как закон нормального распределения случайных погрешностей , которое при бесконечно большом числе измерений имеет вид:
. (5)
Наилучшей оценкой погрешности отдельного измерения в этом случае является стандартное отклонение (СО) :
. (6)
Величину s 2 называют дисперсией .
На кривой нормального распределения случайных погрешностей (рис. 1) имеются две характерные точки перегиба А, А . Абсциссы этих точек равны ± s , т. е. стандартному отклонению. Можно показать, что вероятность появления погрешностей, не выходящих за пределы ± s , равна 0,6827 ( » 68 %) . Иначе говоря, при достаточно большом числе измерений (практически при n ³ 30 ) приблизительно 70 % результатов измерений будут попадать в интервал . В другой терминологии: «попадание результата
измерений в доверительный интервал гарантировано с надежностью a = 0,68 »
Конечно, надёжность измерений может быть задана и большая, чем 0,68 . В этом случае доверительный интервал расширяется и его границы могут быть рассчитаны с помощью так называемых коэффициентов Стьюдента. При выполнении учебных лабораторных работ вполне можно ограничиться надежностью a =0,68 .
Стандартное отклонение характеризует среднюю погрешность отдельных измерений. Результат измерений есть разумная комбинация всех n измерений, и поэтому имеются основания полагать, что он будет более надёжным, чем любое из отдельных измерений.
Стандартное отклонение среднего (СОС или SDOM - standard deviation of the mean ) равно стандартному отклонению s , деленному на :
. (7)
Таким образом, результат многократных измерений какой-либо физической величины должен представляться в виде:
. (8)
Чтобы учесть и случайную и систематическую погрешность, т.е. рассчитать полную погрешность измерений, обычно используют правило квадратичного сложения :
. (9)
4. Оценка точности косвенных измерений
Большинство физических величин обычно невозможно измерить непосредственно, и их определение включает два различных этапа. Сначала измеряют одну или более величин x,...,z, которые могут быть непосредственно измерены и, с помощью которых можно вычислить интересующую нас величину. Затем, используя измеренные значения x,..., z, вычисляют саму искомую величину. Если измерение включает эти два этапа, то и оценка погрешностей тоже включает их. Сначала надо оценить погрешности в величинах, которые измеряются непосредственно, а затем определить, к какой погрешности они приводят в конечном результате. При этом, конечно, необходимо учитывать вид функциональной связи между величинами.
Погрешность функции q=f(x,...,z) нескольких переменных x,...,z , измеренных с погрешностями D x,..., D z ... в случае, если погрешности независимы и случайны, определяется по формуле:
. (10)
Вычисления погрешности с помощью формулы (9) обычно оказываются достаточно громоздкими. Поэтому лучше производить поэтапное вычисление, используя некоторые правила, два из которых являются наиболее употребляемыми:
1. Абсолютная погрешность суммы и разности равна квадратичной сумме абсолютных погрешностей
. (11)