Учебное пособие: Кинематика и динамика поступательного движения

Правила вычисления погрешностей для некоторых других функций приведены в Приложении 1.

Рассмотрим последовательность действий при вычислении погрешности косвенного измерения на примере формулы

.

Сначала найдем абсолютную и относительную погрешность суммы w=m+M:

.

Затем найдем относительную и абсолютную погрешности величины v :

.

Анализ полученной окончательной формулы позволяет установить:

а) Погрешности каких именно величин вносят наибольший вклад в общую погрешность. Точному измерению этих величин необходимо уделить наибольшее внимание.

б) Погрешности каких величин практически не влияют на окончательный результат и их можно даже отбросить.

Будем в дальнейшем не принимать в расчет погрешности постоянных (g, e, p ...) и табличных величин, измеренных с большой точностью. Например, погрешность приближенного числа p » 3,14 составляет всего 0,05 %.

5. Линеаризация функции и метод наименьших квадратов

В физических исследованиях очень часто для сравнения эксперимента с теорией пользуются методом линеаризации теоретической зависимости, Например, исследуется зависимость перемещения S равноускоренного движения от времени движения. Теоретическая зависимость имеет вид

, (13)

где а – ускорение грузов.

Если по экспериментальным точкам построить график зависимости S от t , представляющий собой восходящую кривую, то по виду графика нельзя утверждать, что это парабола и именно та парабола второго прядка, которая соответствует проверяемой закономерности, т. к. похожие графики могут иметь другие закономерности. Единственным графиком, по внешнему виду которого можно однозначно судить о характере исследуемой зависимости, является прямая линия. Для того, чтобы воспользоваться этим свойством

в проверяемой закономерности необходимо выявить в ней такие новые переменные, зависимость между которыми была бы линейной. В нашем случае такими переменными являются S и t2 . Следовательно, для проверки справедливости соотношения (13) имеет смысл строить график экспериментальной зависимости S от t2 . На систему координат S , t 2 (рис. 2) следует нанести экспериментальные точки, а также вправо и влево от них отложить отрезки, длина которых равна погрешностям измерения t 2 (доверительным интервалам). Если через начало координат и доверительные интервалы можно провести прямую линию, т. е. экспериментальная зависимость S = f ( t 2 ) является линейной, значит соотношение (13) подтверждено экспериментально.

Используя график линеаризованной зависимости, можно определить некоторые параметры изучаемого явления из следующих соображений. Уравнение прямой можно записать в виде

y = kx + b . (14)

Угловой коэффициент k :

, (15)

где D x – произвольный отрезок на оси - приращение аргумента, D y – соответствующее приращение функции. Величина b может быть определена как величина отрезка, отсекаемого графиком на оси 0Y . В нашем случае знание коэффициента k позволяет определить ускорение движения: a = 2k .

При нахождении величин k и b из графика к погрешностям измерения добавляется погрешность построения графика. Существует точный метод нахождения величин k и bметод наименьших квадратов (МНК). Этот метод позволяет провести прямую так, что сумма квадратов отклонений экспериментальных точек от графика минимальна. Формулы для определения величин k и b имеют вид:

, . (16)

Зная k и b и задавшись какими-либо значениями x1 и x2 , можно по формуле (14) вычислить y1 и y2 . Затем через две точки с координатами ( x1 ,y1 ) и (x2 ,y2 ) проводится искомая линия.

Теория позволяет также найти погрешности коэффициентов kи b. Сначала вычисляют величины:

, . (17)

Затем вычисляют коэффициент линейной корреляции:

. (18)

Это число принимает значения между -1 и +1 . Если r близко к ± 1 , то точки лежат вблизи некоторой прямой линии; если r близко к 0 , то точки не коррелированны и либо незначительно, либо совсем не группируются около прямой линии.

Вычисление абсолютных погрешностей коэффициентов k иb выполняется по формулам:

, . (19)

6. Микрокалькулятор

Основным назначением микрокалькулятора является быстрое и точное получение результатов арифметических вычислений. Поэтому отпадает необходимость в применении предварительного округления чисел.

Учитывая, что в лабораторных работах редко встречаются числа, имеющие больше четырех значащих цифр, точность до восьми цифр, получаемых на микрокалькуляторе, является излишней и маскирует существование инструментальной погрешности и по Для того чтобы избежать иллюзорного впечатления о высокой точности результата, полученного с помощью микрокалькулятора, нужно посредством правил подсчета значащих цифр округлить результат математических вычислений так, чтобы точность их соответствовала точности данных, полученных от измерения.


ИЗУЧЕНИЕ КИНЕМАТИКИ И ДИНАМИКИ ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ НА МАШИНЕ АТВУДА

Цель работы

Экспериментальная проверка основных уравнений и законов поступательного движения тела на специально сконструированной для этого лабораторной установке – машине Атвуда.

Идея эксперимента

Несмотря на то, что основные уравнения кинематики и динамики прямолинейного движения имеют простую форму и не вызывают сомнения, экспериментальная проверка этих соотношений весьма сложна. Трудности возникают в основном по двум причинам. Во-первых, при достаточно больших скоростях движения тел необходимо с большой точностью измерять время их движения. Во-вторых, в любой системе движущихся тел действуют силы трения и сопротивления, которые трудно учесть с достаточной степенью точности.

Определим, например, время падения тела с высоты h = 1,0 м при g равным 9,8 м/с2 :

. (1.1)

Если при выполнении эксперимента по определению g по времени падения тела с указанной высоты допускается погрешность в измерении времени равная 0,01 с , т. е. возможно получение значений времени 0,46 с или 0,44 с , разброс результатов измерений получается недопустимо большим: g =9,4 – 10,3 м/с2 . С целью уменьшения влияния точности измерения времени на результаты измерений можно, например, резко увеличить высоту падения. Но при падении с больших высот достигаются большие скорости движения, что приводит к резкому увеличению сопротивления воздуха, которое трудно учесть.

Трудности рассмотренного опыта связаны с большим значением ускорения свободного падения. Так как ускорение большое, то тело быстро набирает скорость, а при этом или время падения мало и его трудно точно измерить, или сама расчетная формула неточна, т. к. не учитывает трение.

К-во Просмотров: 356
Бесплатно скачать Учебное пособие: Кинематика и динамика поступательного движения