Учебное пособие: Механика, молекулярная физика и термодинамика
Основная задача кинематики заключается в нахождении закона движения материальной точки. Для этого используются следующие соотношения:
; ; ; ;
.
Частные случаи прямолинейного движения:
1) равномерное прямолинейное движение: ;
2) равноускоренное движение: .
1.3. Тангенциальная и нормальная составляющие ускорения
Часто используется представление ускорения через две составляющие: тангенциальное и нормальное ускорения (рис. 2):
Рис. 2 |
; . |
Тангенциальное ускорение характеризует быстроту изменения скорости по модулю (величине) и направлено по касательной к траектории:
,
где - производная модуля скорости; - единичный вектор касательной, совпадающий по направлению со скоростью .
Нормальное ускорение характеризует быстроту изменения скорости по направлению и направлено по нормали к траектории, к центру кривизны траектории в данной точке:
,
где R - радиус кривизны траектории, - единичный вектор нормали.
В случае, если известны модули составляющих векторов, модуль вектора ускорения может быть найден по формуле
.
1.4. Вращательное движение и его кинематические характеристики
При вращательном движении все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения. Для характеристики вращательного движения вводятся следующие кинематические характеристики (рис. 3).
Угловое перемещение - вектор, численно равный углу поворота тела за время и направленный вдоль оси вращения так, что если смотреть вдоль него, то поворот тела наблюдается происходящим по часовой стрелке.
|
Угловая скорость - характеризует быстроту и направление вращения тела. Она равна производной угла поворота по времени и направлена вдоль оси вращения как угловое перемещение.
При вращательном движении справедливы следующие формулы:
; ; .
Угловое ускорение характеризует быстроту изменения угловой скорости с течением времени, равно
первой производной угловой скорости и направлено вдоль
оси вращения:
; ; .
Зависимость выражает закон вращения тела.
При равномерном вращении e = 0, w = const, j = wt.
При равнопеременном вращении e = const, , .
Для характеристики равномерного вращательного движения используют период вращения и частоту вращения.