Учебное пособие: Механика, молекулярная физика и термодинамика

Основная задача кинематики заключается в нахождении закона движения материальной точки. Для этого используются следующие соотношения:

; ; ; ;

.

Частные случаи прямолинейного движения:

1) равномерное прямолинейное движение: ;

2) равноускоренное движение: .

1.3. Тангенциальная и нормальная составляющие ускорения

Часто используется представление ускорения через две составляющие: тангенциальное и нормальное ускорения (рис. 2):

Рис. 2

;

.

Тангенциальное ускорение характеризует быстроту изменения скорости по модулю (величине) и направлено по касательной к траектории:

,

где - производная модуля скорости; - единичный вектор касательной, совпадающий по направлению со скоростью .

Нормальное ускорение характеризует быстроту изменения скорости по направлению и направлено по нормали к траектории, к центру кривизны траектории в данной точке:

,

где R - радиус кривизны траектории, - единичный вектор нормали.

В случае, если известны модули составляющих векторов, модуль вектора ускорения может быть найден по формуле

.

1.4. Вращательное движение и его кинематические характеристики

При вращательном движении все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения. Для характеристики вращательного движения вводятся следующие кинематические характеристики (рис. 3).

Угловое перемещение - вектор, численно равный углу поворота тела за время и направленный вдоль оси вращения так, что если смотреть вдоль него, то поворот тела наблюдается происходящим по часовой стрелке.

Угловая скорость - характеризует быстроту и направление вращения тела. Она равна производной угла поворота по времени и направлена вдоль оси вращения как угловое перемещение.

При вращательном движении справедливы следующие формулы:

; ; .

Угловое ускорение характеризует быстроту изменения угловой скорости с течением времени, равно

первой производной угловой скорости и направлено вдоль

оси вращения:

; ; .

Зависимость выражает закон вращения тела.

При равномерном вращении e = 0, w = const, j = wt.

При равнопеременном вращении e = const, , .

Для характеристики равномерного вращательного движения используют период вращения и частоту вращения.

К-во Просмотров: 385
Бесплатно скачать Учебное пособие: Механика, молекулярная физика и термодинамика