Учебное пособие: Методы химического анализа
Развитие перечисленных отраслей поставило перед специалистами задачу снизить предел обнаружения примесей в производимых веществах до 10-5 – 10-10 %.Это стало возможным только при условии применения физических и физико-химических методов анализа.
Впечатляют примеры, показывающие связь свойств с загрязнением примесями полупроводниковых материалов, из которых изготавливаются радиоэлектронные элементы с загрязнением исходных материалов, используемых для их изготовления «вредными» примесями. Германий, применяемый в электронной промышленности, утрачивает свои полупроводниковые свойства, если загрязнен фосфором или мышьяком в пределах 10-10 %. Цирконий, являющийся конструкционным материалом для ядерной промышленности, при наличии в нем примеси гафния в пределах 10-5 %, недопустим к применению.
Подобные примеры можно приводить и с лекарственными препаратами, продукцией парфюмерной, пищевой и текстильной промышленности. Наличие вредных примесей в них может негативно повлиять на состояние здоровья людей. Поэтому без применения физических и физико-химических методов анализа сложно контролировать выпуск продукции, проверить качество поступившей в продажу продукции, а значит и разрешать возникающие спорные вопросы между покупателем и продавцом.
Особенное значение приобрели физико-химические методы анализа для решения задач экологической направленности, а также в медицинской и судебно-экспертной практике, так как только с их помощью можно быстро получить достоверные результаты.
Нельзя обойти стороной применение физических и физико-химических методов анализа в военном деле и гражданской обороне. Методы, реализованные в средствах радиационной, химической и биологической разведки позволяют оперативно проводить проверку зараженности атмосферы, техники, имущества, продуктов питания и идентифицировать токсичные вещества. Войсковые газоанализаторы позволяют определять в атмосфере токсичные вещества в концентрациях до 10-5 %. Индикаторы для определения сильнодействующих ядовитых веществ (СДЯВ, табл. 1) и токсичных примесей в испарениях ракетного топлива реагируют на концентрации10-5 –10-7 %, что многократно превышает предельно-допустимые нормы.
Таблица 1
Предельно допустимые нормы концентраций
сильнодействующих ядовитых веществ в атмосфере
№ п/п | Наименование СДЯВ | Величина пороговой токсодозы, г/см3 |
1 | Аммиак | 454 |
2 | Гидразин | 14 |
3 | Окись углерода | 1620 |
4 | Окись этилена | 3600 |
5 | Двуокись серы | 194 |
6 | Сероводород | 2592 |
7 | Фосген | 13 |
8 | Цианистый водород | 36 |
9 | Хлор | 36 |
Примечание. В таблице приведены значение пороговых токсодоз для взрослых людей, для детей – в 4-10 раз меньше.
Важной задачей физических и физико-химических методов анализа является также разработка экспресс методов обнаружения и количественного определения отдельных элементов в составе выпускаемой продукции. Всё перечисленное активизировало развитие аналитического приборостроения, инициировало разработку методов автоматизации контроля химико - технологических процессов, связанных с производством продукции и обеспечения безопасности жизнедеятельности людей. Современное лабораторное аналитическое оборудование позволяет быстро выявить изменения в продукции предназначенной для длительного хранения или, хранящейся с нарушением установленных требований, а также разрешить возникающие спорные вопросы между производителем и потребителем.
1.3 Классификация физико-химических методов анализа
К наиболее востребованным в научной, производственной и социальной практике физическим и физико-химическим методам относятся спектральные, электрохимические и хроматографические методы анализа, рис.2. Они отличаются большим разнообразием, как по принципу действия, так и по технике исполнения в пределах каждого метода и для их изучения потребуется значительно больше времени, чем выделено для учебной дисциплины. Поэтому на занятиях будут рассмотрены приемы лишь тех методов, которые нашли наиболее широкое применение на практике, а также изучены устройства и приборы, используемые в лабораториях и на химических предприятиях для контроля химико-технологических процессов.
1.3.1 Спектрометрические методы анализа
Среди перечисленных групп (см. рис.2) обширной по числу методов является группа спектрометрических методов анализа. В отдельных литературных источниках, авторы в зависимости от решаемых задач, спектрометрические методы называют оптическими, либо фотометрическими. Ошибки в этом нет, так как в любом случае используется свойство атомов и молекул определяемого вещества поглощать, отражать или рассеивать электромагнитное излучение, которое регистрируется приборами
|
|
Рис 2. Схема классификации физических и физико - химических методов анализа
Спектрометрические методы предоставляют широкие возможности для получения аналитических сигналов в различных областях спектра электромагнитного излучения – это γ–лучи, рентгеновское излучение, ультрафиолетовое (УФ), видимое и инфракрасное излучение, а также микроволновые и радиоволновые области спектра. Энергия квантов, перечисленных видов излучения, охватывает очень широкий диапазон энергии от 108 до 10-6 эВ, соответствующий диапазону частот от 1020 до 106 Гц.
Природа взаимодействия столь различающихся по энергии квантов с веществом принципиально разная, этим объясняется большое число разнообразных спектрометрических методов анализа. Для решения разнообразных аналитических задач наибольшее значение имеют спектральные методы анализа, оперирующие с излучением видимого, ИК и УФ диапазонов. Эта группа относится к оптическим (фотометрическим) методам анализа и включает:
спектро – фотометрический и фотоколориметрический методы, нефелометрический метод;
абсорбционно – оптический метод;
люминесцентный метод;
поляризационно – оптический метод;
рефрактометрический метод.
В оптических (фотометрических) методах анализа используется связь между составом системы и ее оптическими свойствами: светопоглощением; светорассеянием; преломлением света; вращением плоскости поляризации плоско поляризованного света; вторичным свечением вещества и т.д.
Спектрофотометрический и фотоколориметрический анализы основаны на способности окрашенных растворов, поглощать ультрафиолетовый, видимый или инфракрасный свет. Степень поглощения излучения зависит от концентрации вещества в растворе (абсорбционная спектроскопия).
Нефелометрия основана на способности мутных растворов (содержащих взвесь – меловой раствор, дым и др.) суспензий рассеивать падающий на них пучок света. Интенсивность света рассеянного частицами зависит от концентрации и фиксируется фотоэлементами.
Люминесцентный метод анализа основан на способности свойства веществ, излучать свет под воздействием различных возбуждающих факторов, установлении зависимости этого излучения от концентрации вещества.
Рефрактометрический метод анализа основан на использовании явления преломления света на границе двух сред, на измерении показателя преломления или разницы показателей преломления веществ.
Поляриметрический метод анализа основан на определении содержания вещества по вращению плоскости поляризации. Метод применим только для оптически активных веществ, т.е. способных вращать плоскость поляризации света.
1.3.2 Электрохимические методы анализа