Учебное пособие: Методы химического анализа

Электрохимические методы анализа классифицируются в зависимости от процессов происходящих на электродах:

1) методы, не связанные с электродной реакцией, измеряемый сигнал в них является откликом на изменения электрохимических свойств в объёме раствора ( низко- и высокочастотная кондуктометрия );

2) методы, основанные на электродной реакции, в результате которой ток через границу раздела фаз не протекает и на границе раздела фаз устанавливается равновесный потенциал, величина которого зависит от концентрации компонентов, участвующих в электродной реакции (потенциометрия).

3) методы, основанные на электродной реакции между электродом и приэлектродной частью раствора, в ходе которой электроны или ионы переходят через границу раздела фаз, обуславливая возникновение тока (вольтамперметрия, амперметрия, кулонометрия, электрографиметрия).

Широкий круг задач, решаемых с помощью электрохимических методов анализа, делает их конкурентоспособными по отношению к другим инструментальным методам, а в ряде случаев единственно возможными. Методы характеризуются:

высокой чувствительностью (10-3 – 10-7 массовых долей определяемого компонента) - полярография, кулонометрия;

широким интервалом определяемых концентраций (1 – 10-9 моль/л), избирательностью и экспрессивностью – ионометрия и ионографиметрия;

относительной простотой проведения анализа и невысокой стоимостью аппаратуры – кондуктометрия и потенциометрия;

возможностью концентрирования в рамках самого метода (инверсионная вольтамперметрия) или сочетания с другими методами (например, хроматографией, экстракцией);

лёгкостью автоматизации всего аналитического цикла – все методы.

1.3.3 Хроматографические методы анализа

Хроматографические методы анализа (хроматография) предназначены для определения качественного и количественного состава газообразных и жидких веществ. Они широко применяются в научных целях для изучения физико-химических свойств газов и растворов, а в промышленной и лабораторной практике для анализа смеси газообразных, жидких и твёрдых веществ.

Методы основаны на разделении исследуемой смеси веществ между двумя несмешивающимися фазами - подвижной и неподвижной. Подвижная фаза представляет собой поток газа или жидкости, которая непрерывно перемещается вокруг неподвижной фазы (сорбента) – жидкости или твёрдого тела. В результате перемещения подвижной фазы исследуемая смесь разделяется на компоненты за счёт различной поглощаемости (сорбируемости) её составных частей при движении по слою сорбента.

В зависимости от признаков классификации различаются следующие виды хроматографии:

I. По агрегатному состоянию применяемой подвижной фазы: - жидкостная, газовая;

2. По состоянию неподвижной фазы газовой хроматографии - газотвердая, газожидкостная;

3 . По механизму разделения: ионообменная; адсорбционная; распределительная; осадочная;

4. По способу проведения процесса или аппаратному оформлению: колоночная; капиллярная; плоскостная.

Многие физико-химические методы анализа отличаются скоростью проведения определений вследствие высокой их селективности. Чувствительность физико-химических методов анализа превосходит чувствительность графиметрического и титрометрического. Так, чувствительность спектрофотометрических определений составляет 10-3 -10-4 , люминесцентного - 10-5- 10-6 , полярографического метода анализа – 10-3 -10-7 массовых долей (% ) определяемого компонента.

Чтобы получить надежные результаты при использовании физико-химических методов анализа и наиболее полно использовать возможности этих методов, необходимо понимать как процессы химического взаимодействия, так и закономерности возникновения и измерения физических сигналов. Каждая стадия анализа, каждая его операция может быть источником случайных ошибок. Поэтому очень важно уметь оценить с помощью методов математической статистики достоверность полученных результатов анализа.

Физико-химические методы анализа широко используются в практике аналитического контроля протекания химико-технологических процессов на предприятиях, в ходе анализа веществ в производственных и научных лабораториях, а также лабораториях по контролю качества и сертификации продукции.

1.4. Особенности физико - химических методов аналитического контроля

Первая особенность заключается в высокой скорости получения результата с помощью физических и физико-химических методов анализа. Скорость анализа на многих производствах имеет большое значение, так как позволяет корректировать технологические процессы, снижать энергетические и др. затраты. На особо опасных производствах, в гражданской обороне в военном деле скорость получения информации о выбросе (появлении или применении) токсичных веществ в воздушное пространство позволяет предотвратить появление неоправданных жертв.

Современные приборы, работающие на принципах физических и физико-химических методов анализа, позволяют получать результаты, как на месте контроля, так и через несколько минут после поступления пробы в лабораторию.

Вторая особенность физических и физико-химических методов анализа не связана с непосредственным определением качества продукции, но благодаря ей представляется возможностью проведения анализа веществ на расстоянии. Примерами таких анализов могут служить:

анализ лунного грунта, выполненный рентгенофлуоресцентным устройством, установленным на луноходе;

определение состава атмосферы, окружающей планету Венера;

исследования атмосферы и грунта на Марсе, которые в настоящее время проводят специалисты США и Евросоюза с использованием методик и средст, разработанных российскими учёными. Разновидностью такого анализа является дистанционный контроль объектов нашей планеты с высокой радиоактивностью или токсичностью, а также на больших глубинах. Такие анализы находят все большее применение для контроля экологической обстановки в промышленно нагруженных районах, особенно при наличии в них ядерных и химических производств.

Третья особенность физических и физико-химических методов анализа позволяет автоматизировать процесс контроля химико-технологических и других производств. Используемые оборудование и приборы работают автоматически и на основании данных анализа регулируют подачу компонентов, поддерживая определенную среду (рН-, концентрацию) в технологическом процессе. Например, при производстве NН4 NОз автоматические датчики дозируют подачу NН3 и НNОз на основании автоматического анализа среды в реакторе - нейтрализаторе (NH3 + НNОз = NH4 NO3 + Q).

К-во Просмотров: 286
Бесплатно скачать Учебное пособие: Методы химического анализа