Учебное пособие: Непрерывность функции на интервале и на отрезке
Рис.3.20.Непрерывная функция принимает любое промежуточное значение
Доказательство. Рассмотрим вспомогательную функцию , где . Тогда и . Функция , очевидно, непрерывна, и по предыдущей теореме существует такая точка , что . Но это равенство означает, что .
Заметим, что если функция не является непрерывной, то она может принимать не все промежуточные значения. Например, функция Хевисайда (см. пример 3.13) принимает значения , , но нигде, в том числе и на интервале , не принимает, скажем, промежуточного значения . Дело в том, что функция Хевисайда имеет разрыв в точке , лежащей как раз в интервале .
Для дальнейшего изучения свойств функций, непрерывных на отрезке, нам понадобится следующее тонкое свойство системы вещественных чисел (мы уже упоминали его в главе 2 в связи с теоремой о пределе монотонно возрастающей ограниченной функции): для любого ограниченного снизу множества (то есть такого, что при всех и некотором ; число называется нижней гранью множества ) имеется точная нижняя грань , то есть наибольшее из чисел , таких что при всех Аналогично, если множество ограничено сверху, то оно имеет точную верхнюю грань : это наименьшая из верхних граней (для которых при всех ).
Рис.3.21.Нижняя и верхняя грани ограниченного множества
Если , то существует невозрастающая последовательность точек , которая стремится к . Точно так же если , то существует неубывающая последовательность точек , которая стремится к .
Если точка принадлежит множеству , то является наименьшим элементом этого множества: ; аналогично, если , то .
Кроме того, для дальнейшего нам понадобится следующая
Лемма 3.1 Пусть - непрерывная функция на отрезке , и множество тех точек , в которых (или , или ) не пусто. Тогда в множестве имеется наименьшее значение , такое что при всех .
Рис.3.22. Наименьший аргумент, при котором функция принимает заданное значение
Доказательство. Поскольку - ограниченное множество (это часть отрезка ), то оно имеет точную нижнюю грань . Тогда существует невозрастающая последовательность , , такая что при . При этом , по определению множества . Поэтому, переходя к пределу, получаем, с одной стороны,
а с другой стороны, вследствие непрерывности функции ,
Значит, , так что точка принадлежит множеству и .
В случае, когда множество задано неравенством , мы имеем при всех и по теореме о переходе к пределу в неравенстве получаем
откуда , что означает, что и . Точно так же в случае неравенства переход к пределу в неравенстве даёт
откуда , и .
Теорема 3.8 (об ограниченности непрерывной функции) Пусть функция непрерывна на отрезке . Тогда ограничена на , то есть существует такая постоянная , что при всех .
Рис.3.23. Непрерывная на отрезке функция ограничена
Доказательство. Предположим обратное: пусть не ограничена, например, сверху. Тогда все множества , , , не пусты. По предыдущей лемме в каждом из этих множеств имеется наименьшее значение , . Покажем, что
Действительно, . Если какая-либо точка из , например , лежит между и , то