Учебное пособие: Основные правила дифференцирования

Лекция № 1

Основные правила дифференцирования

Обозначим f(x) = u, g(x) = v- функции, дифференцируемые в точке х.

1) (uv) = uv

2) (uv) = uv + uv

3), если v 0

Эти правила могут быть легко доказаны на основе теорем о пределах.

Производные основных элементарных функций:

1)С = 0; 9)

2)(xm ) = mxm -1 ; 10)

3) 11)

4) 12)

5) 13)

6) 14)

7) 15)

8) 16)


Логарифмическое дифференцирование

Дифференцирование многих функций упрощается, если их предварительно прологарифмировать. Для этого поступают следующим образом. Если требуется найти y' из уравнения y=f(x), то можно:

1. Прологарифмировать обе части уравнения (по основанию е) ln y = ln f(x) = j(x).

2. Продифференцировать обе части равенства, считая ln y сложной функцией от переменной x: .

3. Выразить y' = y·j'(x) = f(x)·(lnx)'.

Примеры.

1. y = xa – степенная функция с произвольным показателем.

.

2.

Показательно-степенная функция и ее дифференцирование

Показательно-степенной функцией называется функция вида y = uv , где u=u(x), v=v(x).

Логарифмическое дифференцирование применяется для нахождения производной от показательно-степенной функции.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 279
Бесплатно скачать Учебное пособие: Основные правила дифференцирования