Учебное пособие: Основные правила дифференцирования
Лекция № 1
Основные правила дифференцирования
Обозначим f(x) = u, g(x) = v- функции, дифференцируемые в точке х.
1) (uv) = uv
2) (uv) = uv + uv
3), если v 0
Эти правила могут быть легко доказаны на основе теорем о пределах.
Производные основных элементарных функций:
1)С = 0; 9)
2)(xm ) = mxm -1 ; 10)
3) 11)
4) 12)
5) 13)
6) 14)
7) 15)
8) 16)
Логарифмическое дифференцирование
Дифференцирование многих функций упрощается, если их предварительно прологарифмировать. Для этого поступают следующим образом. Если требуется найти y' из уравнения y=f(x), то можно:
1. Прологарифмировать обе части уравнения (по основанию е) ln y = ln f(x) = j(x).
2. Продифференцировать обе части равенства, считая ln y сложной функцией от переменной x: .
3. Выразить y' = y·j'(x) = f(x)·(lnx)'.
Примеры.
1. y = xa – степенная функция с произвольным показателем.
.
2.
Показательно-степенная функция и ее дифференцирование
Показательно-степенной функцией называется функция вида y = uv , где u=u(x), v=v(x).
Логарифмическое дифференцирование применяется для нахождения производной от показательно-степенной функции.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--