(1) Докажите, что точки, симетричные ортоцентру триугольника относительно прямых, которые содержат его стороны, лежат на описаной окружности этого триугольника. даю 30 балов

(1) Докажите, что точки, симетричные ортоцентру триугольника относительно прямых, которые содержат его стороны, лежат на описаной окружности этого триугольника. даю 30 балов
Гость
Ответ(ы) на вопрос:
Гость
пусть данный треугольник ABC, в нем опущены высоты AK и BN, ортоцентр - O. Нарисуем точку, симметричную O относительно BC: продолжим OK на отрезок, равный OK, за точку K. Обозначим полученную точку L. Теперь необходимо доказать, что ablc - вписанный пусть ∠obk = a Δobl - равнобедренный, тк bk - высота и медиана => ∠kbl = ∠obk = a из Δbnc ∠nbc = 90 - ∠bcn из Δakc ∠kac = 90 - ∠kcn ∠kcn и ∠bcn - один и тот же угол => ∠kac = ∠nbc = a ∠lac = ∠cbl = a => они опираются на одну дугу и ablc - описанный => точка l - лежит на окружности, описанной около abc. оставшиеся 2 точки доказываются абсолютно аналогично
Не нашли ответ?
Ответить на вопрос
Похожие вопросы