1. Радиусы оснований усеченного конуса равны R и r. Образующая наклонена к основанию под углом a. Найти площадь полной поверхности конуса.
1. Радиусы оснований усеченного конуса равны R и r. Образующая наклонена к основанию под углом a. Найти площадь полной поверхности конуса.
Ответ(ы) на вопрос:
Гость
Полная поверхность усеченного конуса складывается из площадей оснований и из боковой поверхности конуса. Площади основания - это площади кругов соответствующих радиусов, т.е. πr² и πR². Их сумма - π(R²+r²).
Площадь боковой поверхности усеченного конуса есть разность боковых площадей полных конусов, построенных на большем и меньшем основаниях. Площадь боковой поверхности полного конуса равна πRL, где R - радиус основания, а L - длина образующей.
Достроим усеченный конус до полного. Т.к. основания параллельны друг другу, то углы между образующей и каждым из основанием равны. Длина образующей каждого из конусов определяется из соответствующего прямоугольного треугольника и равна радиусу основания, деленного на косинус угла между образующей и основанием.
L=R/cosα; l=r/cosα - длины образующих для большего и меньшего оснований соответственно.
Боковая поверхность большего конуса равна πRL=πR(R/cosα)=πR²/cosα. Аналогично, боковая поверхность меньшего конуса равна πr²/cosα.
Значит, площадь боковой поверхности усеченного конуса равна их разности, т.е. πR²/cosα-πr²/cosα=π(R²-r²)/cosα.
Т.о., площади полной поверхности равна π(R²+r²)+π(R²-r²)/cosα.
Не нашли ответ?
Похожие вопросы