1. Смежные стороны параллелограмма равны 32 см и 26 см, а один из его углов равен 150 градусов. Найдите площадь параллелограмма. 2. Площадь прямоугольной трапеции равна 120 см2, а её высота равна 8 см. Найдите все стороны трапе...

1. Смежные стороны параллелограмма равны 32 см и 26 см, а один из его углов равен 150 градусов. Найдите площадь параллелограмма. 2. Площадь прямоугольной трапеции равна 120 см2, а её высота равна 8 см. Найдите все стороны трапеции, если одно из оснований больше другого на 6 см. 3. На стороне АС данного треугольника АВС постройте точку D так, чтобы площадь треугольника АВD составила одну треть площади треугольника АВС.
Гость
Ответ(ы) на вопрос:
Гость
1) Дано: ABCD - параллелограмм              AB = 26 см, AD = 32 см, ∠B = 150°    Найти: S     Решение:     Проведем высоту BH    Получим прямоугольный ΔABH, ∠H = 90°, ∠B = 150-90 = 60°,     ∠A = 90 - 60 = 30° В прямоугольном треугольнике катет, лежащий напротив угла 30° равен половине гипотенузы  BH = 1/2 * AB = 1/2 * 26 = 13 см Площадь параллелограмма равна произведению основания и высоты, проведенной к этому основанию S = AD * BH  S = 32 * 13 = 416 см² 2) Дано: ABCD - прямоугольная трапеция, ∠A = 90°              S = 120 см², AB = 8 см - высота               BC и  AD - основания              AD > BC на 6 см Найти: AB, BC, CD, AD  Решение: AB - высота и меньшая боковая сторона AB = 8 см Пусть BC = x, AD = x + 6  S = (BC + AD)/2 * AB  (x + x + 6)/2 * 8 = 120 (2x + 6)/2 = 120/8 x + 3 =15 x = 15 - 3  x = 12   BC = 12 см, AD = 12 + 6 = 18 см Проведем высоту CH. Получим прямоугольный ΔCDH, ∠H = 90° DH = AD - AH, AH = BC DH = 18 - 12 = 6 см По т.Пифагора  CD² = CH² + DH² CD² = 8² + 6² = 64 + 36 = 100 CD=√100 = 10  ОТвет: AB = 8 см, BC = 12 см, CD = 10 см, AD = 18 см 3) Нужно поделить сторону AC на три равные части и ближе к точке A построить точку D   
Не нашли ответ?
Ответить на вопрос
Похожие вопросы