1. Стороны треугольника равны 12, 16 и 20. Найти его высоту, проведенную из вершины большего угла.2. Сколько диагоналей имеет выпуклый 15-угольник?
1. Стороны треугольника равны 12, 16 и 20. Найти его высоту, проведенную из вершины большего угла.
2. Сколько диагоналей имеет выпуклый 15-угольник?
Ответ(ы) на вопрос:
Гость
1.
△ABC: AB=16, BC=20, AC=12, AK⟂BC.
BC=BK+CK,
AK²=AC²-CK², AK²=AB²-BK²=AB²-(BC-CK)²,
CK=√(AC²-AK²), CK=BC-√(AB²-AK²),
√(AC²-AK²)=BC-√(AB²-AK²),
AC²-AK²=BC²-2BC·√(AB²-AK²)+AB²-AK²,
√(AB²-AK²)=(AB²+BC²-AC²)/(2BC),
AB²-AK²=(AB²+BC²-AC²)²/(4BC²),
AK²=AB²-(AB²+BC²-AC²)²/(4BC²);
AK²=16²-(16²+20²-12²)²/(4·20²),
AK²=2304/25,
AK=48/5=9,6.
2.
n=15,
n(n-3)/2=15(15-3)/2=90.
Не нашли ответ?
Похожие вопросы