1.     В шести коробках лежат  шарики: в первой – 1, во второй – 2,  в третьей – 3, в четвертой – 4, в пятой – 5, в шестой – 6. За один ход разрешается в любые две коробки прибавить по одному шарику. Можно ли за несколько ходов...

1.     В шести коробках лежат  шарики: в первой – 1, во второй – 2,  в третьей – 3, в четвертой – 4, в пятой – 5, в шестой – 6. За один ход разрешается в любые две коробки прибавить по одному шарику. Можно ли за несколько ходов уравнять количество шариков во всех коробках? Если нет то почему? Ответ должен быть полным.
Гость
Ответ(ы) на вопрос:
Гость
 Всего шариков в коробках первоначально 1 + 2 + 3 + 4 + 5 + 6 = 21, а после k ходов их станет 21 + 2k. С другой стороны, общее количество шариков в коробках в тот момент, когда во всех коробках станет шариков поровну, равно 6n, где n – число шариков в одной коробке.  Отсюда 21 + 2k = 6n.  Но равенство невозможно при натуральных k и n, так как его правая часть четна, а левая – нечетна.  Ответ: нельзя.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы