10 класс, неравенство !!!!!!!

10 класс, неравенство !!!!!!!
Гость
Ответ(ы) на вопрос:
Гость
Смотри: Корень в числителе всегда больше, либо равен нулю. Следовательно мы можем смело его убирать, НО! учитывая область допустимых значений, а именно -x^2-10x+11>=0 (подкоренное выражение больше, либо равно нулю) Из этого неравенства получаем ограничение на х -x^2-10x+11>=0 x^2+10x-11>=0 D=144 x1=-11    ===> Раскладываем на множители x2=1 (x+11)(x-1)>=0 x>=1      или      x<=-11 Получив ограничения, решаем исходное неравенство, убрав корень из числителя В знаменателе: x^2+x-12 D=49 x1=-4 x2=3 x^2+x-12=(x+4)(x-3) Получаем неравенство: (x+1) / (x+4)(x-3)>=0 Получаем промежутки от -4 до -1 и от 3 до +бесконечности Теперь вспоминаем про ограничения 2 случая: при х>=1 и при х<=-11 1)Первый промежуток нас не устраивает, т.к. х>=1, остается только второй x от 3 до +бесконечность 2)В случае при х<=-11 нас не устраивает не один из промежутков, следовательно, здесь корней нет Ответ: xe(3;+∞)     (х принадлежит промежутку от 3 до +бесконечность)
Не нашли ответ?
Ответить на вопрос
Похожие вопросы