1)3sinx-√3 cosx=32)4sinx+6cosx=1помогите с решением пожалуйста! (если можно то с подробным решением)

1)3sinx-√3 cosx=3 2)4sinx+6cosx=1 помогите с решением пожалуйста! (если можно то с подробным решением)
Гость
Ответ(ы) на вопрос:
Гость
1) 3sinx-√3 cosx=3; Уравнения вида asinx+bcosx=c решаются следующим образом: 1) нужно разделить обе части уравнения на выражение √(a²+b²); a=3, b=-√3; √(3²+(-√3)²)=√(9+3)=√12=2√3; 2) получаем уравнение вида √3/2sinx-1/2cosx=√3/2; (√3/2=cosπ/6, 1/2=sinπ/6); Далее используем формулу сложения (сумму или разность для синуса): sinx*cosπ/6-cosx*sinπ/6=√3/2; sin(x-π/6)=√3/2; x-π/6=(-1)^(k)*arcsin(√3/2)+πk, k∈Z; x-π/6=(-1)^(k)*π/3+πk,k∈Z; x=(-1)^(k)*π/3+π/6+πk, k∈Z. Ответ: (-1)^(k)*π/3+π/6+πk, k∈Z. Во втором уравнении несколько сложней, так как получаются не табличные значения. Для уравнения вида asinx+bcosx=c есть равносильное уравнение sin(x+α)=c/√(a²+b²), где α=arccos a/√(a²+b²), α=arcsin b/√(a²+b²), α=arctg b/a. 2) 4sinx+6cosx=1; a=4, b=6, √(4²+6²)=√(16+36)=√52=2√13; В этом уравнении удобнее взять α=arctg b/a=arctg 6/4=arctg 3/2. Получаем sin(x+arctg 3/2)=√13/26; x=(-1)^(k)*arcsin √13/26-arctg 3/2+πk, k∈Z. Ответ: (-1)^(k)*arcsin √13/26-arctg 3/2+πk, k∈Z.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы