Ответ(ы) на вопрос:
Гость
2/(7^x -7) ≥ 5/(7^x -4)
2/(7^x -7) - 5/(7^x -4) ≥ 0,
(2*(7^x -4) -5*(7^x-7) )/(7^x -7)(7^x -4) ≥ 0,
(2*7^x -8 -5*7^x +35) /(7^x -7)(7^x -4) ≥ 0,
(-3*7^x + 27)/(7^x -7)(7^x -4) ≥ 0,Решаем методом интервалов:
-3*7^x +27 = 0, 7^x -7=0, 7^x -4 = 0
-3*7^x = -27 7^x = 7 7^x = 4
7^x = 9 x =1 xln7 = ln4
xln7 = ln9 x = ln4/ln7
x = ln9/ln7 x = 2ln2/ln7
x = 2ln3/ln7
( ln2 ~0,6931, ln3~1,0986, ln7~1,9459)
Гость
[latex]7^x-7 \neq 0 \\ 7^x \neq 7 \\ x \neq 1[/latex]
[latex]7^x-4 \neq 0 \\ 7^x \neq 4 \\ x \neq log_{7}4[/latex]
[latex]y=7^x[/latex]
[latex] \frac{2}{y-7} - \frac{5}{y-4} \geq 0 \\ y \neq 7 \\ y \neq 4 [/latex]
[latex] \frac{2(y-4)-5(y-7)}{(y-7)(y-4)} \geq 0 \\ \\ \frac{2y-8-5y+35}{(y-7)(y-4)} \geq 0 \\ \\ = \frac{-3y+27}{(y-7)(y-4) } \geq 0 [/latex]
[latex] \frac{-3(y-9)}{(y-7)(y-4)} \geq 0 \\ \\ \frac{y-9}{(y-7)(y-4)} \leq 0 \\ \\ (y-9)(y-7)(y-4) \leq 0 [/latex]
y=9 y=7 y=4
- + - +
-------- 4 ----------- 7 ------------ 9 -------------
\\\\\\\\\ \\\\\\\\\\\\\\
y∈(-∞; 4)U(7; 9]
1) [latex]7^x\ \textless \ 4 \\ \\ x\ \textless \ log_{7}4[/latex]
2)[latex]7\ \textless \ 7^x \leq 9 \\ 1\ \textless \ x\ \textless \ log_{7}9[/latex]
x∈(-∞; log₇4)U(1; log₇9]
Не нашли ответ?
Похожие вопросы