1)Из пучка прямых [latex] \alpha (2x+y-1)+ \beta (2x-y+2)=0[/latex] выберите две взаимно перпендикулярные прямые. 2) Найдите каноническое уравнение прямой [latex] \left \{ {{x+y-2=0} \atop {y-z+1=0}} \right. [/latex]
1)Из пучка прямых [latex] \alpha (2x+y-1)+ \beta (2x-y+2)=0[/latex] выберите две взаимно перпендикулярные прямые.
2) Найдите каноническое уравнение прямой [latex] \left \{ {{x+y-2=0} \atop {y-z+1=0}} \right. [/latex]
Ответ(ы) на вопрос:
Гость
1)
У перпендикулярных прямых значения коэффициентов - ОБРАТНЫЕ ОБРАТНЫМ.
k₂ = - 1/k₁ - и знак меняется и значение.
Знак МИНУС (перед У) - уже дан.
Остается найти чтобы коэффициенты были обратными:
α = 1/β или β = 1/α - ОТВЕТ
Гость
1. Из пучка прямых α(2x+y -1) +β(2x -y +2) =0 выберите две взаимно перпендикулярные прямые.
---------
α =β =1 ⇒4x +1 =0 ⇔ x = -1/4 .
α = - β =1⇒2y - 3/2 =0 ⇔ y = 3 /2 .
* * * x = -1/4 и y = 3/2 * * *
M₀( -1/4 ; 3 /2) центр пучка прямых
y -y₀ =k(x -x₀) ⇔y -3/2 =k*(x +1/4) .
Любые две прямые : 1) y - 3/2 =k*(x +1/4) и 2) y - 3/2 = (- 1/k)*(x +1/4) .
можно задавать например:
a) k = -2 ⇒ 2x+y -1 =0 и 4x -8y +13 =0 .
b) k = 2 ⇒ 2x -y +2 0 и 4x +8y -11= 0
------------
2. Найдите каноническое уравнение прямой : {x+y -2 = 0 ;y - z +1 =0 .
(x - x₁) / (x₂-x₁) = (y - y₁) / (y₂-y₁) = (z - z₁) / (z₂ - z₁) ;
Выбираем две точки : M₁(1; 1; 2 ) , M₂(2; 0; 1 )
(x - 1) / (2 -1) = (y - 1) / (0 -1) = (z - 2) / (1 - 2) ⇔
(x - 1) / 1 = (y - 1) / (-1) = (z - 2) / ( -1) .
Не нашли ответ?
Похожие вопросы