1)Найдите площадь фигуры, ограниченной линиями: у=0; у=2sin(x/2); если 0 меньше =х меньше =2π 2)Найдите значение выражения: Log12√14*log14√12 3)Найдите область определения функции: у=√2-5x-3x^2/x
1)Найдите площадь фигуры, ограниченной линиями:
у=0; у=2sin(x/2); если 0<=х<=2π
2)Найдите значение выражения:
Log12√14*log14√12
3)Найдите область определения функции:
у=√2-5x-3x^2/x
Ответ(ы) на вопрос:
Гость
1) y=2*sin(x/2) y=0 x∈[0;2π]
S=intI(₂π/₀) (2*sin(x/2)=(-4*cos(x/2)-0)I₂π/₀=-4*cosπ+4cos0=-4*(-1)+4*1=8.
2) log₁₂√14*log₁₄√12=log₁₂(14)¹/²*log₁₄(12)¹/²=(1/2)*log₁₂14*(1/2)*log₁₄12=
=log₁₂14/(4*log₁₂14)=1/4.
3)y=√((2-5x-3x²)/x)
ОДЗ: (2-5x-3x²)/x≥0 x≠0
(3x²+5x-2)/x≤0
3x²+5x-2=0 D=49
x=1/3 x=-2. ⇒
(x-1/3)(x+2)/x≤0
-∞_____-_____-2_____+_____0______-____1/3_____+______+∞
x∈(-∞-2]∨(0;1/3].
Не нашли ответ?
Похожие вопросы