2)Один из корней уравнения 9х^2-15х+с=0 в четыре раза больше другого. Найдите с
2)Один из корней уравнения 9х^2-15х+с=0 в четыре раза больше другого. Найдите с
Ответ(ы) на вопрос:
Гость
Просто начнем решать квадратное уравнение с этим параметром.
D=225-36c
x1=[latex] \frac{4(15- \sqrt{225-36c} )}{18} [/latex] 4 появилась потому что мы знаем что один корень в 4 раза больше другого.
x2=[latex] \frac{(15+ \sqrt{225-36c} )}{18} [/latex]
Дальше используем данное нам условие: x2=4x1. Приравняем наши полученные х
60-[latex] 4 \sqrt{225-36c} [/latex]-15 - [latex] \sqrt{225-36c} [/latex]=0
45-5[latex] \sqrt{225-36c} [/latex]=0
[latex] \sqrt{225-36c} [/latex]=9
Чтобы избавиться от корня,возведем обе части в квадрат
225-36с=81
36с=144
с=4
Значит D равен 225-144=81
а если посчитать корни уравнения, то
x1=[latex] \frac{1}{3} [/latex]
x2=[latex] \frac{4}{3} [/latex]
Что удовлетворяет условию задачи
Не нашли ответ?
Похожие вопросы