5. Треугольник ABC — равнобедренный с основанием АС. На его биссектрисе BD взята точка М, а на основании — точка К, причем, МК || АВ. Найдите углы треугольника MKD, если ABC = 126°, BAC = 27°(без рисунка)6. Докажите, что на рис...

5. Треугольник ABC — равнобедренный с основанием АС. На его биссектрисе BD взята точка М, а на основании — точка К, причем, МК || АВ. Найдите углы треугольника MKD, если ABC = 126°, BAC = 27°(без рисунка) 6. Докажите, что на рисунке прямые АВ и KN параллельны, если треугольник АВК — равнобедренный с основанием ВК, а луч KB является биссектрисой угла AKN.
Гость
Ответ(ы) на вопрос:
Гость
Дано: треуг. MKN, А принадлежит МК, В принадлежит MN. Треуг АВК равнобедренный, АК=АВ. КВ-биссектриса АКN. Доказать, что АВ II KN.Доказательство:Так как КВ-биссектриса MKN, то угол МКВ=BKN, и так как треуг. КАВ равнобедренный с основанием КВ, то углы при основании равны АКВ=АВК. Отсюда следует, что АВК=BKN, а эти углы являются накрест лежащими при прямых АВ и KN и секущей ВК. Если накрест лежащие углы равны, то прямые АВ и КN параллельны. Доказано.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы