ABCD - ромб, О- точка пересечения диагоналей, АС:BD=2:3, OE и AB перпендикулярны, площадь треугольника AOE равна 27. Найдите площадь ромба ABCD.

ABCD - ромб, О- точка пересечения диагоналей, АС:BD=2:3, OE и AB перпендикулярны, площадь треугольника AOE равна 27. Найдите площадь ромба ABCD.
Гость
Ответ(ы) на вопрос:
Гость
Пусть АС=4х, ВD=6x, тогда отношение AC:BD=4x:6x=2:3 Диагонали ромба взаимно перпендикулярны, в точке пересечения делятся пополам и разбивают ромб на 4 равных прямоугольных треугольника. По теореме Пифагора сторона ромба а²=(d₁/2)²+(d₂/2)²=(2x)²+(3x)²=13x² а=х√13 Из формул для вычисления площади треугольника АОВ S(Δ AOB)=AO·OB/2 и S(Δ AOB)=AB·OE/2 находим OE AO·OB=AB·OE OE=2x·3x/х√13=6х/√13. Из треугольника АОЕ по теореме Пифагора AE²=AO²-EO²=(2x)²-(6x/√13)²=4x²-(36x²/13)=(52x²-36x²)/13=16x²/13 AE=4x/√13 S(Δ AOE)=AE·OE/2 (4x/√13)·(6x/√13)=54 24x²=54·13 x²=9·13/4 S(ромба)=a·h=(x√13)·2OE=(x√13)·2·(6x/√13)=12x²=12·(9·13/4)=27·13= =351 кв. ед
Не нашли ответ?
Ответить на вопрос
Похожие вопросы