Алгебра, 8 класс. Задание в приложении

Алгебра, 8 класс. Задание в приложении
Гость
Ответ(ы) на вопрос:
Гость
1. а) х² - 5х + 6 = 0 По обратной теореме Виета: х1 + х2 = 5 х1•х2 = 6 х1 = 3 х2 = 2 Ответ: х = 2; 3. б) х² - 17х + 42 = 0 Снова по обратной теореме Виета: х1 + х2 = 17 х1•х2 = 42 х1 = 14 х2 = 3 Ответ: х = 3; 14. 2. х² + 7х - 11 = 0 (х1 - х2)² = х1² - 2х1•х2 + х1² = х1² + 2х1•х2 + х1² - 4х1•х2 = (х1 + х2)² - 4х1•х2 (1). По обратное тоереме Виета: х1 + х2 = -7 х1•х2 = -11 Подставляем эти значения в выражение (1): (-7)² - 4•(-11) = 49 + 44 = 93. Ответ: 93.
Гость
[latex]2. \\ a)x^2-5x+6=0 \\ x_{1} + x_{2} = 5\\ x_{1}* x_{2}=6 \\ x_{1}=3 \\ x_{2}=2 \\ \\ b)x^2-17x+42=0 \\ x_{1} + x_{2} =17 \\ x_{1}*x_{2} =42 \\ x_{1}=3 \\ x_{2}=14 \\ \\ 3. \\ x_{1} + x_{2} =-7 \\ x_{1}* x_{2}=-11 \\ \\ ( x_{1} - x_{2})^2= x_{1}^2-2 x_{1} x_{2}+ x_{2}^2=( x_{1}+ x_{2})^2-4 x_{1} x_{2} \\ \\ (-7)^2-4*(-11)=49+44=93 [/latex] Ответ: 93
Не нашли ответ?
Ответить на вопрос
Похожие вопросы