АВСД-ПАРАЛЛЕЛОГРАММ, АВ=10см, угол А = 30 градусов, ВК и СД взаимно перпендикулярны; ВК =4см. Найдите АД , ДК и площадь АВСД.
АВСД-ПАРАЛЛЕЛОГРАММ, АВ=10см, угол А = 30 градусов, ВК и СД взаимно перпендикулярны; ВК =4см. Найдите АД , ДК и площадь АВСД.
Ответ(ы) на вопрос:
[latex]BK=CH[/latex] BK и CH и высота, проведенные к основанию.
[latex]AB=CD=10[/latex]
[latex]DK= CD-CK[/latex]
угол А равен 30 градусам. Угол лежащий против угла в 30 градусов равен половине гипотенузы. У нас это высота CH. AC является гипотенузой и ,соответственно [latex]AC=8[/latex].
Найдем по теореме Пифагора основание прямого треугольника AHC. [latex]AH^+CH^2=AC^2 AH= \sqrt{64-16}= \sqrt{48} [/latex]
AH=KD
[latex]10- \sqrt{48} = \sqrt{100}- \sqrt{48}= \sqrt{52} [/latex]
[latex]SADCD=AB*AC*sin \alpha [/latex]
[latex]S=10*8*sin30=40[/latex]
[latex]D= \sqrt{AB^2+AC^2+2*AC*AB*cos30} = \sqrt{164+2*8*10* \frac{1}{2} } [/latex]
[latex]D= \sqrt{244} [/latex]
Не нашли ответ?
Похожие вопросы