Боковые грани пирамиды наклонены к основанию под углом 45 градусов, в основании - треугольник со сторонами 39см, 39см и 30. Найти объем.    В треугольной пирамиде стороны основания 3м,3м и 4м. Все боковые ребра  равны по 3 метр...

Боковые грани пирамиды наклонены к основанию под углом 45 градусов, в основании - треугольник со сторонами 39см, 39см и 30. Найти объем.    В треугольной пирамиде стороны основания 3м,3м и 4м. Все боковые ребра  равны по 3 метра. Обьем нужно найти.
Гость
Ответ(ы) на вопрос:
Гость
Будем считать основанием треугольник со сторонами 3, 3, 4. По формуле площади S = abc/(4R), где R - радиус описанной окружности. По формуле Герона S = sqrt(5*2*2*1) = 2sqrt(5). Отсюда R = 3*3*4/(4*2sqrt(5))=9/2/sqrt(5). Так как боковые ребра равны, то центр описанной окружности - основание высоты пирамиды. Пусть h - высота, тогда: h^2 + R^2 = 3^2 h^2 + 81/20 = 9 h^2 = 9 - 81/20 = 99/20 Отсюда V = 1/3*(99/20)*(2sqrt(5)) = 3,3sqrt(5)
Не нашли ответ?
Ответить на вопрос
Похожие вопросы