Cos(4x+п/4)=-корень 2/2 одз: [-П;п)

Cos(4x+п/4)=-корень 2/2 одз: [-П;п)
Гость
Ответ(ы) на вопрос:
Гость
[latex]cos(4x+ \frac{ \pi }{4} )=- \frac{ \sqrt{2} }{2} \\ \\ 4x+ \frac{ \pi }{4}=(+/-) \frac{3 \pi }{4}+2 \pi k \\ \\ 1)4x+ \frac{ \pi }{4}= \frac{3 \pi }{4}+2 \pi k \\ \\ 4x= \frac{3 \pi }{4}- \frac{ \pi }{4}+2 \pi k \\ \\ 4x= \frac{ \pi }{2}+2 \pi k \\ \\ x= \frac{1}{4}( \frac{ \pi }{2}+2 \pi k ) \\ \\ x= \frac{ \pi }{8}+ \frac{ \pi }{2}k [/latex], k∈Z. На [-π; π]: a) При к= -2     х=[latex] \frac{ \pi }{8}+ \frac{ \pi }{2}*(-2)= \frac{ \pi }{8}- \pi =- \frac{7 \pi }{8} [/latex] b)  При к= -1 [latex]x= \frac{ \pi }{8}+ \frac{ \pi }{2}*(-1)= \frac{ \pi }{8}- \frac{ \pi }{2}=- \frac{3 \pi }{8} [/latex] c) При к=0 [latex]x= \frac{ \pi }{8}+ \frac{ \pi }{2}*0= \frac{ \pi }{8} [/latex] d) При к=1 [latex]x= \frac{ \pi }{8}+ \frac{ \pi }{2}*1= \frac{ \pi }{8}+ \frac{ \pi }{2}= \frac{5 \pi }{8} [/latex] [latex]2) 4x+ \frac{ \pi }{4}=- \frac{3 \pi }{4}+2 \pi k \\ \\ 4x=- \frac{3 \pi }{4}- \frac{ \pi }{4}+2 \pi k \\ \\ 4x=- \pi +2 \pi k \\ x= \frac{1}{4}(- \pi +2 \pi k) \\ \\ x=- \frac{ \pi }{4}+ \frac{ \pi }{2}k, [/latex] k∈Z На промежутке [-π; π]: a) При к=-1 [latex]x=- \frac{ \pi }{4}+ \frac{ \pi }{2}*(-1)=- \frac{ \pi }{4}- \frac{ \pi }{2}=- \frac{3 \pi }{4} [/latex] b) При к=0 [latex]x=- \frac{ \pi }{4}+ \frac{ \pi }{2}*0=- \frac{ \pi }{4} [/latex] c) При к=1 [latex]x=- \frac{ \pi }{4}+ \frac{ \pi }{2}*1=- \frac{ \pi }{4}+ \frac{ \pi }{2}= \frac{ \pi }{4} [/latex] d) При к=2 [latex]x=- \frac{ \pi }{4}+ \frac{ \pi }{2}*2=- \frac{ \pi }{4}+ \pi = \frac{3 \pi }{4} [/latex] Ответ: [latex]- \frac{7 \pi }{8};- \frac{3 \pi }{4};- \frac{3 \pi }{8};- \frac{ \pi }{4}; \frac{ \pi }{8}; \frac{ \pi }{4}; \frac{5 \pi }{8}; \frac{3 \pi }{4}. [/latex]
Не нашли ответ?
Ответить на вопрос
Похожие вопросы