Даю 15 балів....Доведення теореми. Дві прямі паралельні якщо із січною вони уьворюют

Даю 15 балів....Доведення теореми. Дві прямі паралельні якщо із січною вони уьворюють рівні внутрішні різносторонні кути
Гость
Ответ(ы) на вопрос:
Гость
Нехай січна АВ перетинає прямі а і б так, що утворилися при цьому внутрішні накрет лежачі кути 1 і 3 рівні. тоді, як правило показано вище, кути 2 і 4 теж рівні. допустимо, що за такої умови прямі а і б перетинаються в якійсь віддаленій точці С. в результаті утворюється трикутник АВС. уявімо, що цей трикутник повернули навколо точки О - середини відрізка АВ - так, що відрізок ОА зайняв положення ОВ. тоді, оскільки кут 1 = кутку 3, а кут 2 = кутку 4, промінь АС поєднатися з променем ВК, а промінь ВС з променем АР. так як промені АС і ВС мають спільну точку С. це означає, що промені ВК і АР теж мають якусь загальну точку С 1. це означає, що через дві точки С і С1 проведені дві прямі. а цього не може бути. таким чином, якщо кут 1 = кутку 3, то прямі а і б НЕ могул перетинатися, а це значить що вони паралельні: а || б
Не нашли ответ?
Ответить на вопрос
Похожие вопросы