Дан куб ABCDA1B1C1D1, где AA1, BB1, CC1, DD1 - боковые ребра. Длина ребра куба равна а. Точка Е1 -середина ребра В1С1. Найдите радиус сферы, проходящей через точки А1, Е1 С1 С. Помогите пожалуйста, заранее спасибо, если распиши...

Дан куб ABCDA1B1C1D1, где AA1, BB1, CC1, DD1 - боковые ребра. Длина ребра куба равна а. Точка Е1 -середина ребра В1С1. Найдите радиус сферы, проходящей через точки А1, Е1 С1 С. Помогите пожалуйста, заранее спасибо, если распишите по порядку, буду благодарен!)
Гость
Ответ(ы) на вопрос:
Гость
Ведем систему координат. Начало координат в точке А. Направление оси Ох совпадает с вектором AD, оси  Оу совпадает с вектором  АВ, оси Оz  совпадает с вектором  АА₁. Координаты указанных в условии задачи точек A₁(0;0;a); E₁(a/2;a;a); C₁(a;a;a); C(a;a;0) Уравнение окружности с центром в точке (x₀;y₀;z₀)  и радиусом R имеет вид (х-x₀)²+(у-y₀)²+(z-z₀)²=R² Подставим координаты точек в данное уравнение, получим систему четырех уравнений с четырьмя неизвестными:   (0-x₀)²+(0-y₀)²+(a-z₀)²=R² ((a/2)-x₀)²+(a-y₀)²+(a-z₀)²=R² (a-x₀)²+(a-y₀)²+(a-z₀)²=R² (a-x₀)²+(a-y₀)²+(0-z₀)²=R² Вычитаем из третьего уравнения второе: (a-x₀)²-((a/2)-x₀)²=0; (a-x₀-(а/2)+х₀)(a-x₀+(а/2)-х₀)  ⇒ х₀ =3а/4. Вычитаем из третьего уравнения первое (a-x₀)²+(a-y₀)²-(0-x₀)²-(0-y₀)²=0; (a-x₀-x₀)(a-x₀+x₀)+(a-у₀-у₀)(a-у₀+у₀)=0 a-2x₀+a-2y₀=0    ⇒x₀+y₀=a    y₀=a - x₀=a - (3a/4)=a/4 Вычитаем из третьего уравнения четвертое (a-z₀)²- (0-z₀)²=0; (a-z₀-z₀)(a-z₀+z₀)=0  ⇒ z₀ =а/2. Подставим найденные координаты центра окружности  в первое уравнение: (0-(3а/4))²+(0-(а/4))²+(a-(а/2))²=R²⇒  R=a·√(7/8). О т в е т. R=a·√(7/8).
Не нашли ответ?
Ответить на вопрос
Похожие вопросы