Дан ромб ABCD. BM перпендикулярна AD, BM = 8, Pdoc = 10, Найти P ромба.

Дан ромб ABCD. BM перпендикулярна AD, BM = 8, Pdoc = 10, Найти P ромба.
Гость
Ответ(ы) на вопрос:
Гость
Ромб ABCD, его высота ВМ=8, диагонали перпендикулярны и в точке пересечения делятся пополам. Пусть сторона ромба равна а, половины диагоналей равны Х и Y. Площадь ромба - произведение стороны на высоту, высота=8.Тогда Sр=8а. Площадь треугольника DОС, образованного половинами диагоналей и стороной, равна 1/4 площади ромба, то есть 2а. Тогда имеем: Х+Y+а=10 (периметр треугольника DОС) или X+Y=10-a. В треугольнике DOC: X²+Y²=a² (по Пифагору). Sdoc=8а/4=2а. Но Sdoc = (1/2)Х*Y, отсюда Х*Y=4а. Итак, имеем:  (1) X+Y=10-a  (2) X²+Y²=a²  (3) X*Y=4a. Возведем (1) в квадрат, тогда (X+Y)²=(10-a)² или Х²+2ХY+Y²=100-20a+a². Вставим сюда (2) и (3):  а²+8а=100-20a+a² или 28а=100, отсюда а=25/7. Тогда периметр ромба равен 4*25/7=100/7 = 14и2/7.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы