Даны вершины треугольника ABC: A(3; -1),B(4; 2) и C(-2; 0). Напишите уравнения его сторон

Даны вершины треугольника ABC: A(3; -1),B(4; 2) и C(-2; 0). Напишите уравнения его сторон
Гость
Ответ(ы) на вопрос:
Гость
Треугольник АВС образуется пересечением прямых, у которых уравнения имеют общий вид: у=kx+b. Чтобы найти уравнения сторон треугольника, нужно найти частные уравнения этих прямых. 1) Сторона АВ: прямая у=kx+b через точки с координатами (3;-1) и (4;2). Подставляем их поочередно в уравнение общего вида, имеем систему из двух уравнений: 3k+b=-1 и 4k+b=2. b=2-4k,  3k+2-4k=-1, -k=-3, k=3, b=2-4*(-3)=2+12=14 AB: y=3x+14 2) Сторона ВС: аналогично. 4k+b=2 и -2k+b=0 b=2k, 4k+2k=2, 6k=2, k=1/3, b=2*1/3=2/3 BC:  y=1/3x+2/3 3) Сторона AC: 3k+b=-1 и -2k+b=0 b=2k,  3k+2k=-1,  5k=-1,  k=-1/5, b=-2/5 AC: y=-1/5x-2/5
Не нашли ответ?
Ответить на вопрос
Похожие вопросы