Диагональ параллелограмма делит его угол на части, равные 45 и 30. Найти отношение большей стороны параллелограмма к меньшей
Диагональ параллелограмма делит его угол на части, равные 45 и 30. Найти отношение большей стороны параллелограмма к меньшей
Ответ(ы) на вопрос:
Диагональ образует с противоположными сторонами параллелограмма равные углы (это внутренние накрест лежащие углы при параллельных и секущей). Поэтому, как легко увидеть, диагональ делит параллелограмм на два (равных) треугольника, у которых один угол 45, другой 30, и в этих треугольниках напротив этих углов лежат стороны параллелограмма. Остается только записать теорему синусов для такого треугольника b/a = sin(45)/sin(30) = √2;
Не нашли ответ?
Похожие вопросы