Диагональ равнобедренной трапеции делит тупой угол пополам. Меньшее основание трапеции равно 3, ее периметр равен 42. Найдите высоту трапеции.

Диагональ равнобедренной трапеции делит тупой угол пополам. Меньшее основание трапеции равно 3, ее периметр равен 42. Найдите высоту трапеции.
Гость
Ответ(ы) на вопрос:
Гость
Если равны углы при диагонали, то один из треугольников, образуемых данной диагональю, является равнобедренным. Следовательно большее основание равно обеим боковым сторонам. Пусть основание - х. P = 3+х+х+х 3+3х = 42 3х = 39 х = 13 - большее основание. меньшая часть основания, отсекаемого высотой, равна: (13-3):2 = 5  находим  высоту равнобедренной трапеции - по теореме пифагора в треугольнике, составленным высотой, боковой гранью и меньшей частью основания, отсекаемой этой высотой. h = √(13 ²-5²) = √144 = 12 находим площадь: S = 1\2(a+b)*h = 1\2(3+13)*12 = 192\2 = 96
Не нашли ответ?
Ответить на вопрос
Похожие вопросы