Диагональ равнобедренной  трапеции является биссектрисой ее острого угла и делит среднюю линию трапеции на отрезки 10 см и 22 см. Найти площадь трапеции.

Диагональ равнобедренной  трапеции является биссектрисой ее острого угла и делит среднюю линию трапеции на отрезки 10 см и 22 см. Найти площадь трапеции.
Гость
Ответ(ы) на вопрос:
Гость
Площадь трапеции равна произведению средней линии на высоту. Средняя линия трапеции равна 10+22 = 32 см. Так как диагональ является биссектрисой острого угла, то боковая сторона равна меньшему основанию. Меньшее основание и боковая сторона равны 10*2 = 20 см, большее основание равно 22*2 = 44 см. Тогда высота трапеции равна √20^2 - ((44 - 20)/2)^2 = √256 = 16 см. И, наконец, площадь равна 16*32 = 512 кв. см. Ответ: 512 кв см
Не нашли ответ?
Ответить на вопрос
Похожие вопросы