Диагональ равнобокой трапеции является биссектрисой её острого угла и перпендикуляром к боковой стороне. Найти площадь трапеции, если её меньшая сторона равняется а

Диагональ равнобокой трапеции является биссектрисой её острого угла и перпендикуляром к боковой стороне. Найти площадь трапеции, если её меньшая сторона равняется а
Гость
Ответ(ы) на вопрос:
Гость
Пусть у нас трапеция АВСД, АВ = СД, АС - биссектриса угла А, угол АСД - прямой. Если биссектриса острого угла трапеции является его диагональю, то меньшее основание трапеции равно её боковой стороне. Имеем АВ = ВС =СД = а. Опустим перпендикуляр СЕ из точки С на АД. При этом получили 2 подобных треугольника: АСЕ и ЕСД. Угол САЕ равен углу ДСЕ как взаимно перпендикулярные. Угол А равен углу Д (как углы при основании равнобедренной трапеции). Поэтому угол ДСЕ равен половине угла Д. Имеем: 90° =(1/2)Д+Д = (3/2)Д, Отсюда угол Д = 90*2/3 = 180/3 = 60°. Тогда ЕД = а/2, а основание АД = а+2(а/2) = 2а. Высота СЕ = а*sin 60° = a√3/2. Площадь S трапеции равна: S = ((a+2a)/2)*(a√3/2) = (3a/2)*(a√3/2) = 3√3a²/4. То есть данная трапеция равна площади трёх равносторонних треугольников со стороной а.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы