Диагонали АС и ВD трапеции АВСD пересекаются в точке О, основание АD=2, ВС=3, SAOB =6. Найдите площадь трапеции.
Диагонали АС и ВD трапеции АВСD пересекаются в точке О, основание АD=2, ВС=3, SAOB =6. Найдите площадь трапеции.
Ответ(ы) на вопрос:
Гость
Проведем через точку О отрезок ЕК, перпендикулярный основаниям трапеции.
Треугольники АОD и BОC подобны, т.к.
S(AOD) = S(ABD) * АD/(AD+BC).
Площадь треугольника ABO равна разности площадей треугольников ABD и AOD:
S(ABO) = S(ABD) - S(AOD) = S(ABD) - S(ABD) * АD/(AD+BC) = S(ABD) * BC/(AD+BC).
Из этого выражения S(ABD) = S(ABO) * (AD+BC)/BC.
Площадь треугольника ABD также равна половине произведения его основания на высоту:
S(ABD) = AD*EK/2.
Приравнивая эти два выражения, получим:
AD*EK/2 = S(ABO) * (AD+BC)/BC.
Отсюда высота трапеции
EK = S(ABO) * 2(AD+BC)/(AD*BC).
Площадь трапеции ABCD равна
S(ABCD) = (AD+BC)*EK/2 = S(ABO) * (AD+BC)^2/(AD*BC),
где знак ^ означает возведение в степень.
S(ABCD) = 6*(2+3)^2/(2*3) = 25.
Не нашли ответ?
Похожие вопросы