Диагонали делят трапецию на четыре треугольника. Площади треугольников,прилегающих к основаниям ,равны 6 и 54. Найдите площади треугольников ,прилегающих к боковым сторонам.

Диагонали делят трапецию на четыре треугольника. Площади треугольников,прилегающих к основаниям ,равны 6 и 54. Найдите площади треугольников ,прилегающих к боковым сторонам.
Гость
Ответ(ы) на вопрос:
Гость
Диагонали пересекаются в точке О. Благодаря свойству трапеции ΔАОВ=ΔСОД, а тр-ки ВОС и АОД подобны. Их коэффициент подобия: k²=S/s=54/6=9 ⇒ k=3. Пусть ВО=х, СО=у, тогда ДО=3х, АО=3у. α - угол между диагоналями, его синус одинаковый для всех треугольников, образованных пересекающимися диагоналями. Сумма тр-ков АОВ и СОД: S1=(х·3у·sinα+3х·у·sinα)/2=(6xy·sinα)/2. Сумма тр-ков ВОС и АОД: S2=(х·у·sinα+3x·3y·sinα)/2=(10xy·sinα)/2. S1/S2=6/10=3/5. По условию S2=6+54=60, значит S1=3·S2/5=36.  ΔАОВ=ΔСОД=36/2=18 (ед²).
Не нашли ответ?
Ответить на вопрос
Похожие вопросы