Диагонали равнобедренной трапеции трапеции ABCD взаимно перпендикулярны, BH - высота к большему основанию трапеции CD а) докажите что треугольник BHD - равнобедренный б) найдите площадь трапеции, если ее средняя линия равна 11.

Диагонали равнобедренной трапеции трапеции ABCD взаимно перпендикулярны, BH - высота к большему основанию трапеции CD а) докажите что треугольник BHD - равнобедренный б) найдите площадь трапеции, если ее средняя линия равна 11.
Гость
Ответ(ы) на вопрос:
Гость
Разбираемся с чертежом. Есть трапеция АВСD,  Проведена высота ВH. Диагонали взаимно перпендикулярны. Проведём из вершины С прямую, параллельную диагонали ВD.  Построим Δ ACК. Этот Δ прямоугольный , равнобедренный ( АС = СК) Этот треугольник подобен ΔDDH ( по 1 признаку подобия) Значит, ΔBDH - равнобедренный. ΔАСК - прямоугольный. В нём АК ==22.По т. Пифагора СА^2 + CK^2 = 484, CA ^2 =242. CA - 11√2. А теперь ΔВH D. По т. Пифагора BH^2 + BD^2 = 242. DH^2 =121, BH = 11. Площадь трапеции равна произведению средней линии  и её высоты. S = 11·11 = 121.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы