Длина медианы AF - треугольника ABC равна 16 корней из 2 см, точка O - точка пересечения медиан. Вычислите расстояние от точки O до прямой AB, если градусная мера угла, образованного стороной AB и отрезком AF, равна 45 градусов.
Длина медианы AF - треугольника ABC равна 16 корней из 2 см, точка O - точка пересечения медиан. Вычислите расстояние от точки O до прямой AB, если
градусная мера угла, образованного стороной AB и отрезком AF, равна 45 градусов.
Ответ(ы) на вопрос:
Гость
Медианы тр-ка пересекаются в одной точке и делятся этой точкой в отношении 2:1 считая от вершины. АО:ОФ=2:1 ⇒
АО=АФ·(2/3)=32√2/3 см.
Из точки О проведём перпендикуляр ОК к прямой АВ, ОК⊥АВ.
В прямоугольном тр-ке АОМ ∠МАО=∠АОМ=45°, значит он равнобедренный. OM=AO.
ОМ=АО·sin45=32√2·√2/6=32/3=[latex] 10\frac{2}{3} cm.[/latex] - это ответ.
Не нашли ответ?
Похожие вопросы