Длина одного из катетов прямоугольного треугольника равна 12. Расстояние от центра описанной около этого треугольника окружности до этого катета равно 2,5. Найдите радиус вписанный в этот треугольник окружности

Длина одного из катетов прямоугольного треугольника равна 12. Расстояние от центра описанной около этого треугольника окружности до этого катета равно 2,5. Найдите радиус вписанный в этот треугольник окружности
Гость
Ответ(ы) на вопрос:
Гость
Радиус вписанной в многоугольник окружности равен отношению его площади к полупериметру     r=S:p Ни площади, ни полупериметра мы пока не знаем, но можем узнать. Поскольку отрезок, соединяющий центр гипотенузы с противоположным катетом перпендикулярен к нему, он от начального треугольника отрезает  подобный ему. Коэффициент подобия этих треугольников 2, так как гипотенуза вдвое больше своей половины. Следовательно, второй катет большего треугольника равен 2,5*2=5 см Гипотренуза равна √ (144+25)=13 см Площадь треугольника 12*5:2=30 см² полупериметр 12+5+13=30 см 30:2=15 см  r=S:p=30:15=2 см
Не нашли ответ?
Ответить на вопрос
Похожие вопросы