Ответ(ы) на вопрос:
m³+m²n+mn²-m²n-mn²-n³=m³-n³
m³-n³=m³-n³
Ответ: тождество доказано!
Доказать: (m-n)(m^2+mn+n^2)=m^3-n^3
Решение:
1) Раскроем скобки:
m^3+m^2*n+mn^2-m^2n-mn^2-n^3
2) Взаимно уничтожим одинаковые выражения с противоположными знаками:
m^3-n^3
3) Мы доказали, что (m-n)(m^2+mn+n^2)=m^3-n^3.
Не нашли ответ?
Похожие вопросы