Докажите : 1) cos^4a-sin^4a+sin^2a=cos^2a 2) (sin^2+tg^2a+cos^2a)*(cos^2+tga*ctga)=2
Докажите :
1) cos^4a-sin^4a+sin^2a=cos^2a
2) (sin^2+tg^2a+cos^2a)*(cos^2+tga*ctga)=2
Ответ(ы) на вопрос:
[latex]1) cos^{4} a-sin^{4} \alpha +sin ^{2} \alpha =cos^{2} \alpha \\ cos^{4} \alpha -sin ^{4} \alpha +sin ^{2} \alpha =(cos ^{4} \alpha -sin ^{4} \alpha )+sin ^{2} \alpha = [/latex][latex]=(cos^{2} \alpha -sin ^{2} \alpha )+sin ^{2} \alpha =1(cos ^{2} \alpha -sin^{2} \alpha )+sin ^{2} \alpha =cos ^{2} \alpha \\ cos^{2} a=cos^{2} a[/latex]
[latex][latex](sin ^{2} \alpha +tg ^{2} \alpha +cos ^{2} \alpha )(cos ^{2} \alpha +tg \alpha ctg \alpha )=2 \\ (1+tg ^{2} \alpha )*(cos ^{2} \alpha +1)=cos ^{2} \alpha +1+cos ^{2} \alpha tg ^{2} \alpha +tg ^{2} \alpha = \\ cos ^{2} a+1+cos ^{2} \alpha * \frac{sin ^{2} \alpha }{cos ^{2} \alpha } +tg ^{2} \alpha =cos ^{2} \alpha +1+sin ^{2} \alpha +tg ^{2} a= \\ =2+tg ^{2} \alpha [/latex]
1) cos⁴a-sin⁴a+sin²a=cos²a
(cos²a-sin²a)(cos²a+sin²a)+sin²a=cos²a
(cos²a-sin²a) *1+sin²a=cos²a
cos²a-sin²a+sin²a=cos²a
cos²a=cos²a
2) (sin²a+tg²a+cos²a)*(cos²a+tga*ctga)=2
(1+tg²a)(cos²a+1)=2
[latex](1+tg^{2}a)(cos^{2}a+1)= \frac{1}{cos^{2}a}* (cos^{2}a+1)= \frac{cos^{2}a}{cos^{2}a} +\frac{1}{cos^{2}a}= \\ 1+\frac{1}{cos^{2}a}=1+1+ tg^{2}a=2+tg^{2}a \\ [/latex]
Не нашли ответ?
Похожие вопросы