Докажите что для любого n принадлежащего N справедливо равенство : 1*2*3+2*3*4+...+n(n+1)(n+2)=1/4 n(n+1)(n+2)(n+3)
Докажите что для любого n принадлежащего N справедливо равенство : 1*2*3+2*3*4+...+n(n+1)(n+2)=1/4 n(n+1)(n+2)(n+3)
Ответ(ы) на вопрос:
1. n=1, 1*2*3=1/4*(2)*(3)*(4), 6=6 - верно! 2. предположим, что равенство верно для n=k 1*2*3+2*3*4+...+k(k+1)(k+2)=1/4k(k+1)(k+2)(k+3) 3. Докажем, что равенство верно для n=k+1 1*2*3+2*3*4+...+k(k+1)(k+2)+(k+1)(k+2)(k+3)=1/4(k+1)(k+2)(k+3)(k+4) выделенная часть равна 1/4k(k+1)(k+2)(k+3), мы подставляем это вместо выделенного 1/4k(k+1)(k+2)(k+3)+ (k+1)(k+2)(k+3) и доводим это уравнение до вида: 1/4(k+1)(k+2)(k+3)(k+4) 1/4k(k+1)(k+2)(k+3)+ (k+1)(k+2)(k+3)= ((k+1)(k+2)(k+3))(1/4*k+1)= (k+1)(k+2)(k+3)(k+4)*1/4 (k+1)(k+2)(k+3)(k+4)*1/4 = 1/4(k+1)(k+2)(k+3)(k+4), а значит для n=k+1 равенство верно!
Не нашли ответ?
Похожие вопросы